
CS 231 INTRODUCTION TO SYSTEMS PROGRAMMING FALL 2002
 AND COMPUTER ORGANIZATION

 Syllabus & Course Policies

INSTRUCTOR: Robert England EMAIL: englandr@rhodes.edu
OFFICE: OH 419; Hrs: 2pm-3pm M-F PHONE: 843-3725

TEXT: Introduction to Computing Systems: From Bits & Gates to C and Beyond,

by Patt and Patel. It would also be a good idea to track down a decent C (not C++)
language reference. Supplemental material will be distributed in class as needed.

COURSE DESCRIPTION:

This course takes a bottom-up view of the computer as computational machine, beginning with
bits and bytes and moving up to higher-level languages. The process of computation is presented
through a hierarchy of virtual machine abstractions, beginning with the hardware and moving
upward through various levels of increasingly sophisticated software, culminating in an
introduction to the C language on the UNIX operating system. We will examine the facilities
available at each layer of abstraction, along with the mechanisms and software tools that lead to
the realization of the hierarchy.

PREREQUISITES:

CS 142 and Discrete Math.

TOPICS: [not necessarily in this order]

 [and perhaps a bit ambitious]

Introduction

Brief history of computing machines
The components of a computing system

Machine level representation of data

Bits, bytes, and words
Numeric data representation and number bases
Signed and twos-complement representations
Fundamental operations on bits
Representation of nonnumeric data

Digital logic

Logic gates
Combinational logic circuits
Memory and simple storage elements

TOPICS, cont.:

Assembly level machine organization

Basic organization of the von Neumann machine
Control unit
Instruction fetch, decode, and execution
Instruction sets and types
Assembly/machine language programming

 Variables, types, expressions, and assignment
Simple I/O
Conditional and iterative control structures
Functions and parameter passing
Structured decomposition

Instruction formats

Input and output

Simple text I/O and text files
Binary files

Fundamental data structures for low-level programming

Primitive types
Arrays, records, strings and string processing
Data representation in memory
Static, stack, and heap allocation

Implementation of recursion
Runtime storage management
Pointers and references

Introduction to programming in C
 Mapping high-level constructs to low-level implementations
 Special C operators for low-level programming
 C I/O facilities

Introduction to processes and threads

Introduction to programming in a UNIX environment
 C/C++ development environment
 The UNIX command line and simple scripts

GRADING:

Program assignments and homework: 40%
2 in-class tests: 35%
Final exam: 20% [Friday, 13 Dec 2002, 1:00pm-3:30pm]
Attendance: 5% Free! (...sort of. See next page.)

ATTENDANCE:

Attendance will be checked each class lecture period. As a bonus to those who attend regularly,
each student who misses no more than 2.0 class meetings will be allowed to omit selected
questions on the final exam worth a total value of approximately 15 points out of 100. These 2.0
allowed absences are to cover emergencies and do not have to be explicitly excused --- no
excuses for other absences will be accepted with regard to this bonus. Each tardy (arrival after the
start of class) counts as 0.5 absence. After class, you should alert me to your presence if you were
tardy; otherwise, you will probably be counted absent.

In addition, regular attendance is worth a Free 5% of your overall course grade. Students who
miss more than 6.0 class meetings forfeit this Free 5%.

Students are responsible for all material assigned or covered in class. The instructor’s own lecture
notes will not be made available for copying or review, so be sure to get notes from a colleague in
the class if you should (unavoidably) miss a class meeting.

TESTS:

Both of the regular tests and the exam will be closed book, closed notes. Typical test format is a
list of multiple choice questions, one code writing problem, and one code trace problem, though
there may be slight variations to this format.

PROGRAM ASSIGNMENTS:

Each program assignment will each be awarded a letter grade A through X:

A: (100 pts)
 ‘A’ programs are carefully designed, efficiently implemented, well documented, and
produce clearly formatted, correct output.

A- : (94 pts)
 This is an ‘A’ program with one or two of the minor (?) problems described for grade
‘B’.

B: (88 pts)
 A ‘B’ program typically could easily have been an ‘A’ program, but it may have
minor/careless problems such as poor, inadequate, or incomplete documentation; several
literal values where symbolic constants would have been appropriate; wrong file names
(these will be specified per program assignment); incomplete hard copies; sloppy source
code format; minor efficiency problems; minor (?) memory leaks; etc. (This is not an
exhaustive list.) You would be wise to consider ‘B’ the default grade for a working
program --- this might encourage you to review and polish your first working draft of an
assignment to produce a more professional quality final version of your program.

C: (75 pts)
 A ‘C’ program has more serious problems: incorrect output for important special cases
(the "empty" case, the "maxed-out" case, etc.), failure to carefully follow design and
implementation requirements spelled out in the assignment description, very poor or
inefficient design or implementation, near complete absence of documentation, etc.

PROGRAM ASSIGNMENTS, cont.:

D: (60 pts)
 A ‘D’ program compiles, links, and runs, but it produces clearly incorrect output for
typical cases. Or, it may deviate greatly from the design or implementation requirements
stated in the assignment description.

F: (35 pts)
 Typically, an ‘F’ program produces no correct output, or it may not even compile. It
may “look like a program” when printed as a hard copy, but there remains much work to
be done for it to be a correct, working program. Still, as a last resort, an ‘F’ program is
better than no program turned in at all.

X: (0 pts)
 A grade of ‘X’ will be recorded for each program not turned in. Each ‘X’ has the
additional side effect of lowering the final grade for the course by one letter.

A fully documented sample program that you can use as a model for source code format will be
distributed with or before the first programming assignment. The first line of each program
source code file submitted for credit must be a comment that states the name of the source code
file. Each student is responsible for keeping a back-up copy on disk of all source code turned in
for an assignment. Failure to do so could result in loss of credit for an assignment.

Programming assignments must be turned in on the due date to receive full credit. Programs will
be accepted late, but with a penalty of one letter grade per day.

Recommendation: keep this list of policies handy as a partial checklist of requirements to review
before turning in each completed assignment!

ACADEMIC INTEGRITY:

All programs and tests must be the student's own work. Copying all or part of an assignment, or
downloading code from the Internet and submitting it as your own, or having someone else write
code for your assignment, or having someone else debug your assignment, or allowing someone
else to copy from you, or coding or debugging someone else's assignment --- these are all
included in the definition of reportable Honor Code violations for this course. If you have any
doubts about whether or not a program development practice on an assignment is acceptable,
clear it with the instructor before proceeding.

The instructor reserves the right to alter this syllabus as necessary.

	CS 231 INTRODUCTION TO SYSTEMS PROGRAMMING FALL 2002
	 AND COMPUTER ORGANIZATION

