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Abstract

We develop a new notion of financial contagion, or the spread of negative character-

istics from one market to another, by fitting a conditionally stable model to residuals

extracted from a nonlinear regression. More specifically, we estimate the return on

a dependent market given the return on an independent market using a spline-based

local mean function. Then, instead of assuming that the residuals have a Gaussian

distribution, we assume that the residuals are independent stable random variables

when conditioned on the covariate market return. In general, the stable distribu-

tion depends on four parameters, two of which control skewness and tail heaviness.

With our approach, these parameters become functions that are nonparametrically

estimated. For various dependent markets, we study the change in the skewness and

heaviness functions from the median to the tail of an associated covariate market

return distribution (in our case, the U.S. stock market). Using a permutation test,

we determine whether, given a value in the tail of the covariate market return distri-

bution, the residuals are more likely to be left-skewed or heavy at the left tail than

at the median of the covariate distribution.



1

Introduction

In financial econometrics, the relationship between a covariate market and another

dependent market, especially during a time of crisis, is of interest for several reasons.

Most importantly, the transmission of crises from one market to another sheds light

on the limitations of portfolio diversification theory. In principle, portfolio diver-

sification reduces risk in times of crisis through diversification across international

markets [1][5][15][18]. We will refer to this transmission of crises, or more generally

the phenomenon that occurs when one market transfers unattractive characteristics

to another market, as “contagion.” Primarily, contagion is of concern for financial

planners and international investors becuase if contagion indeed exists, portfolio di-

versification fails when its benefits are most needed [17]. While several authors have

formally characterized multiple notions of contagion, we will develop a notion of con-

tagion more appropriate to a market in which the dependent market is driven by

independent, identically distributed innovations from a conditionally stable — rather

than a Gaussian — distribution.

In general, we will investigate the skewness and tail heaviness of the residuals

derived from a local polynomial fit between dependent and covariate market returns.

As a result, we will be able to examine the skewness and tail heaviness of the residuals

in the tail of the covariate distribution, and in doing so we will investigate difference
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between skewness and tail heaviness at the tail and at the median of the distribu-

tion. In short, we will say that contagion exists when skewness or tail heaviness is

significantly greater at the tail of the covariate return distribution than at the me-

dian. In other words, if the residuals are more likely to be negatively skewed in a

day of crisis, we will say that skewness contagion exists. Similarly, we will say that

tail heaviness contagion exists when the data has more probability mass in the tail

of its distribution, i.e., returns are more likely to be large and negative (or large and

positive, although we will not be as concerned with that case) given that a crisis has

occurred.
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2

Review of Relevant Literature

In order to motivate a new definition of contagion, we will first discuss previously

attempts to define contagion and their failings, such as the problems associated with

definitions of contagion derived from notions of correlation. Namely, to our knowledge

all previous definitions of contagion depend on the assumption that stock return data

has a conditionally Gaussian structure, which is widely held to be untrue. Hence, it

is for this precise reason that we propose an alternative definition in the next section.

2.1 Contagion

In recent years financial crises, such as those in Mexico in 1995, Thailand in 1997,

in Russia in 1999, and most recently the credit crisis in 2008, have provided mo-

tivation for concern about international “spillovers” from one market to the next.

More specifically, these cross-country comovements of markets in times of crisis have

prompted academics and financial practitioners alike to ask whether policies should

aim to prevent such comovements in order to protect markets and investors for a va-

riety of reasons, whether it be to preserve the benefits of diversification or to protect

countries with economies that cannot afford to feel the impact of an international

crisis, a common adverse side effect of international market integration [17].
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Problematically, no common definition exists in the literature for “contagion,”

the term most commonly associated with the comovements of international equity

markets—or the transmission of crisis from a market X to a market Y . Hence, there

exists no standard empirical or theoretical tool to identify whether contagion does or

does not exist in a given situation. While some authors provide theoretical grounds

for identifying contagion, statistical justification does not always exist in order to

confirm the existence of contagion during a given crisis. Finally, in some studies on

contagion, authors do not distinguish between interdependence and contagion, which

causes ambiguity regarding wether two markets are interrelated based on a variety

of factors or whether a true transmission of a crisis has occurred. In other words,

the comovement of two markets could occur due to a general correlation between

the markets rather than a heightened level of interdependence given that a crisis

has occurred. Theoretically, contagion is more often associated with the latter case,

namely when there exists an increased level of dependence during a time of crisis [17].

While no true agreement has become well accepted in the literature regarding a

rigorous definition for contagion in the literature, many authors have attempted to

produce such a definition. As a result, in perhaps the primary paper on financial

contagion, Pericoli and Sbracia (2003) provide a general overview of previous work

on contagion and present five definitions along with their statistical counterparts.

First, the authors identify contagion as “a significant increase in the probability

of a crisis in one country, conditional on a crisis occurring in another country.” This

definition, most commonly used in an attempt to study currency collapses, relies on

a crisis indicator i. Specifically, a study following this definition would examine a

weighted average of changes in exchange rates, short term interest rates, and inter-

national reserves. The study would then take an extreme value of the distribution

of the weighted averages, for example two standard deviations from the mean, and

call it x. We would then say that a crisis has occurred in country i if the weighted

average at time t is greater than x. Finally, the econometrician would then examine
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the increase in the probability of crisis in country Y given that a crisis has occurred

in country i, using the appropriate control variables.

The second definition which Pericoli and Sbracia present identifies contagion as

occurring “when volatility of asset prices spills over from the crisis country to other

countries.” This definition “exploits” the empirical evidence of an increase in volatil-

ity of asset prices during a time of financial turmoil, and characterizes market uncer-

tainty by an index of market volatility. Intuitively, then, this definition can be easily

interpreted as the spread of uncertainty from one market to another. Unfortunately,

the coexistence of uncertainty in one market and uncertainty in another market can

just as easily be due to market interdependence rather than contagion, which we can

think of as a transmission of a negative characteristic of one market to another, rather

than simply the coexistence of the same undesirable characteristic in two markets.

Statistically, this measure of contagion uses the residual correlation between markets

after modeling the returns in a market X as a function of the returns of some market

Y . It assumes that the covariance of market X and Y are normally distributed, which

results from the assumption that the joint distribution of returns in markets X and Y

are normal. Once the model is estimated, one can measure the effects of the country-

specific shock on country X at time t on the volatility (or market uncertainty) of

market X, the covariance between markets X and Y , and the volatility of market Y .

Third, Pericoli and Sbracia present a more theoretical approach to defining conta-

gion, namely that contagion exists when “cross-country comovements of asset prices

cannot be explained by fundamentals,” where by fundamentals the authors mean the-

oretical beliefs regarding how international markets function and interact, such as,

for example, the existence of theoretical market equilibria. Problematically, however,

the authors admit that contagion could indeed exist within the theoretic structure,

but would not be identified as such by the model.

Fourth, the authors define contagion as “a significant increase in comovements of

prices and quantities across markets, conditional on a crisis occurring in one market
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or group of markets.” The appeal of this definition is that it seems to capture the

most intuitive meaning of contagion, but it is sensitive to the meaning of “significant

increase,” which of course can be defined a variety of ways. According to Pericoli and

Sbracia, the key to defining contagion in this way is to distinguish between periods

of normal comovements, often associated with simple interdependence, and excessive

comovements, associated with a structural change in the data. The latter, then, would

indicate a period of contagion, while the former would be of less concern. Finally, an

examination of the difference in correlation during a period of excessive comovements

and a period of normal comovements determines whether contagion exists.

Finally, the authors present a fifth definition of contagion, namely that contagion

exists when “the transmission channel intensifies, or, more generally, changes after a

shock in one market,” where by transmission channel Pericoli and Sbracia mean, in

short, the way in which one market relates to another. For example, if for instance

the U.S. market and the French market both typically depend on truffle prices, and

yet during a period of crisis cease to depend on truffle prices altogether and instead

depend on pork belly prices, we would say that a shift in the structure of transmission

channels has occurred, and likely conclude that contagion has occurred as well [17].

Pericoli and Sbracia identify two major drawbacks of the definitions of conta-

gion presented above. First, the notion of contagion often depends heavily on some

definition of a crisis or crisis period in a market or group of markets. Admittedly,

the identification of crisis and tranquil periods are often arbitrary, and have heavy

impacts on whether one can conclude that contagion exists in a give period. Addi-

tionally, the presence of a lag might lessen the probability that contagion is correctly

identified [17].

The more recent trend in the contagion literature roots itself in econometrics.

Specifically, authors have recently exploited regression theory and its relationship to

correlation in order to characterize contagion, where markets are treated as random

variables. While the most straightforward approach to characterizing the relation-
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ship between two random variables is to compute the simple (Pearson’s) correlation

coefficient between the two random variables, which is given by

ρX,Y = Cov(XY )/Var(X)Var(Y ), (2.1)

this measure fails to capture information regarding specifics about the data, such

as where the data is located in the distribution. Since contagion is, intuitively, an

increase in the probability that a crisis occurs in market Y given that a crisis has

occurred in market X, when investigating contagion we are mainly concerned with

data located in some set associated with the occurrence of a “crisis.” As is natural,

previous literature has concentrated on definitions of correlation dependent on the fact

that a crisis has occurred. Specifically, conditional correlation, ρA, is the correlation

between X and Y given that X lies in some set A. This concept is a common starting

point when beginning a discussion on contagion. Namely, conditional correlation is

given by

ρA = ρ(X, Y |X ∈ A). (2.2)

Difficulties with this approach have been identified and studied extensively by a vari-

ety of authors (see Forbes & Rigobon 2002, Bradley & Taqqu 2004, Boter, Gibson, &

Loretan 1999, Hamrick & Taqqu 2009). First, the conditional correlation coefficient

requires that one assume that X and Y are jointly Gaussian. In particular, since

X and Y are jointly Gaussian, Y |X = x is Gaussian. In financial studies, where

X and Y will typically be stock returns or indices, the distribution in question in

many cases is not jointly Gaussian. In particular, the Gaussian relationship does not

assign sufficient probability to the tails of the distribution. For example, see Figure

2.1. This modeling limitation is particularly problematic when we wish to study large

losses and gains [4].

The more subtle drawback to the use of conditional correlation is its dependence

on some definition of crisis period. For example, in our context, A serves as some set

which contains those returns occurring during a heuristically-defined “crisis period.”
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Figure 2.1: In red, the best possible fit of a Gaussian

distribution is displayed over a histogram of Standard &

Poor’s 500 returns since 1991. In blue, the best possible

fit of a stable distribution is displayed.

As pointed out by Boyer, Gibson, & Loretan (1999), the way in which the conditional

correlation depends on the crisis set A can be problematic. Specifically, in the case

where the set A contains returns that are highly variable, estimates of the conditional

correlation coefficient are biased upward. For example, during a crisis period, stock

returns are, almost by definition, more likely to be highly variable. Consequently, in

many cases the use of ρA may lead one to conclude too easily that contagion exists.

In other words, the upward bias in ρA could lead to overzealous claims. Several

authors have studied the effects of this bias and provided alternate definitions. For

example, Forbes and Rigobon (2002) provide an adjusted ρA that accounts for the

volatility in A. Unfortunately, as Bradley and Taqqu (2004) point out, the power of

Forbes and Rigobon’s test for contagion, developed from the adjusted estimator, is

very low. In other words, given that contagion is present, a test for contagion with

low power identifies the presence of contagion with low probability, which is obviously

problematic.
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In response to the problems associated with the use of conditional correlation,

Bradley and Taqqu study a more general definition of contagion, where the local

correlation coefficient is derived from the nonlinear regression model

Yt = m(Xt) + σ(Xt)εt (2.3)

where m is the local mean function and σ is the skedastic function. In the linear case,

m(x) = α+βx and σ(Xt) = σ. Whereas conditional correlation is developed from the

linear case, Bradley and Taqqu use a generalization of the correlation coefficient—the

local correlation—to define contagion. The local correlation ρ(x) is given by

ρ(x) =
σXβ(x)√

σ2
Xβ

2(x) + σ2(x)
, (2.4)

where β(x) is m′(x), the slope of the mean function at x, and σ2(x) = Var(Y |X = x),

the nonparametric residual variance at x. Finally, Bradley and Taqqu define contagion

from market X to market Y as the case where ρ(xL) > ρ(xM), where xM is the median

of the distribution of X and xL is a low quantile of X, such as F−1
X (.025). In short,

Bradley and Taqqu simultaneously accomplish two goals. First, they escape the

unrealistic assumption that a linear relationship exists between X and Y . Second,

they account for the correlation at a certain point by employing a more general β

and σ that now depend on a particular location within the support of X, avoiding

the problems involved with defining a crisis period. Instead, the point at which the

presence of contagion is determined is dictated by the structure of the data itself,

rather than by a hueristically defined crisis set A.

Using the United States as the independent market in eleven cases, Bradley and

Taqqu find evidence for contagion in seven cases, between the United States and Bel-

gium, France, Germany, Italy, the Netherlands, Switzerland, and the United King-

dom. The Hong Kong, Japan, Australia, and Canadian markets did not appear to be

contagious with the United States market in Bradley and Taqqu’s investigation [5].

Additionally, these results were reached based on the use of daily return data similar

to the data used in this study. Bradley and Taqqu also expanded their analysis to an
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investigation of contagion using the United States as the dependent market, in which

they were not able to infer that contagion exists. Given that the United States is the

dominant international equity market by volume, this result seems intuitive [5].

The advantage of defining contagion in this way, i.e., using local correlation as

opposed to conditional correlation, is to escape the problematic consequences of hav-

ing to define a crisis period. While the move from conditional to local correlation

is certainly a viable one, both definitions require that the distribution Y |X = x be

Gaussian [4]. Unfortunately, it is widely accepted that stock return data do not have

a Gaussian distribution [1][15][18]. As evidence of this fact, consider evidence from

the US stock market. Over the past century, returns of less than negative twenty

percent have occured twice. Under the assumption of normality, a single occurrence

of a negative return of that magnitude would occur once every two lifetimes of the

earth. While this example is not a definitive reproach on the assumption that stock

returns have a normal distribution, it is an easily understood example that evidences

the fact that researchers should indeed be wary of this assumption. Indeed, as the

literature confirms, the assumption of normality is an undesirable one.

Because implications of contagion for the purposes of portfolio diversification are

significant, and because it is easily observed that stock returns are in general not

Gaussian, the goal of this project is to provide and investigate a more robust defini-

tion of contagion that is free of the assumption that (X, Y ) ∼ N (µX , µY , σ
2
X , σ

2
Y , ρ).

Hence, our estimation will evolve from the assumption that the random variables in

question have a conditionally stable distribution. This assumption is a much more

reasonable one for two reasons. First, the generalized Central Limit Theorem guar-

antees that, in the limit, the normalized sums of independent identically distributed

random variables is stable—even those with infinite variance [16]. Secondly, stable

distributions generally admit heavy tails and skewness, of which we see evidence in

return data. Since we will provide our alternate definition of contagion as a model

dependent on the stable distribution, a discussion of the class of stable distributions
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and their attractiveness with regard to return data is necessary.

2.2 The Stable Distribution

In many models of financial returns, returns are assumed to be jointly Gaussian, or

normally distributed. For example, even the fundamental Black and Scholes option

pricing theory relies on the normality of returns [3]. However, as early as the 1960s,

it has been observed that return data exhibits characteristics of distributions with

considerable more probability mass in the tails of the data and higher peaks at the

mean [12]. As such, the fields of finance and economics have embraced the use of

stable distributions (see Mandlebrot 1963, Fama 1965, Samuelson 1967, Roll 1970,

Embrechts et al. 1997, Rachev and Mittnik 2000, McCulloch 1996). Stable distribu-

tions are “a rich class of probability distributions that allow skewness and heavy tails

and have many intriguing mathematical properties” [16]. In particular, a random

variable X is stable if, when X1 and X2 are independent copies of X, and for every

choice of positive real numbers a and b,

aX1 + bX2
D
= cX + d (2.5)

for some positive c and d ∈ R, where by
D
= we mean equal in distribution. More

generally, for ,X1, X2, X3,...,Xn independent, identical copies of a of a random variable

X, X is stable if and only if for all n > 1, there exists constants cn > 0 and dn ∈ R

such that

X1 +X2 +X3 + ...+Xn
D
= cnX + dn. (2.6)

While these definitions are intuitive ones in as much as X remains “stable,” or un-

changed, under addition, they provide no concrete way of parameterizing the stable

distributions with a closed form probability density function. In fact, while the class

of all stable distributions is large, only three specific stable distributions contained

within the class of all stable distributions have known closed form density functions:
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Table 2.1: Comparison of tail probabilities for standard

normal, Cauchy, and Levy distributions.

P(X > c)

c Normal Cauchy Levy

0 .5000 .5000 1.000

1 .1587 .2500 .6827

2 .0228 .1476 .5205

3 .001347 .1024 .4363

4 .00003167 .0780 .3829

5 .0000002866 .0628 .3453

the Gaussian (normal) distribution, the Cauchy (Lorentz) distribution, and the Levy

distribution. As an expository example of the wide range of densities included in

the class of all stably distributed random variables, consider the differences between

these three cases. Specifically, consider a comparison of tail probabilities for the three

distributions in Table 2.2 as an example of the varying possibilities of skewness and

tail heaviness of different stable distributions.

While the lack of closed form density functions for the majority of stable random

variables might seem at first to prevent the use of the stable distribution in practice,

recall that even the standard normal cumulative distribution function has no closed

form, yet it remains one of the most widely used distributions in all of applied statis-

tics. In particular, recent advances in technology and the computational ability of

computers, we can estimate the values of functions without closed forms with ease

and accuracy. Hence, while it might seem that the stable distribution is limited to the

above four cases in practice, it is in fact the case that we can easily estimate values

and quantiles of the stable random variable. Specifically, recall that the characteristic

function of a random variable X completely determines the distribution of X. In the

12



case of the stable distribution, we do know the characteristic function φ(u),

φ(u) =

 exp(−γα|u|α[1 + iβ(tan πα
2

)(signu)(|γu|1−α − 1)] + iδu) if α 6= 1

exp(−γ|u|α[1 + iβ( 2
π
)(sign u)(log|u|] + iδu) if α = 1

so we have the knowledge necessary to characterize the density. In general, the Fourier

transform of a random variable is the characteristic function of the random variable, so

we can indirectly access the probability density function of a stable random variable,

which in turn depends on α, β, γ, and δ.

Equipped with the characteristic function of a stable random variable, we say that

a stable random variable X is parameterized by four measures:

1. α, the index of stability or characteristic exponent, where α ∈ (0, 2],

2. β, a skewness parameter, where β ∈ [−1, 1],

3. γ, a scale parameter, where γ ≥ 0, and

4. δ, a location parameter, where δ ∈ R.

More intuitively, α controls the tail heaviness of the data, β controls how much the

distribution is left or right skewed, and γ and δ control the rather uninteresting aspects

of the distribution–scale and location. Hence, we will remain from this point forward

almost exclusively interested in the parameters α and β, which we will relate to

contagion shortly. Finally, for a stable random variable X, we say X ∼ Sta(α, β, γ, δ).

Moreover, since the stable distribution is fully characterized by α, β, γ, and δ, once we

are equipped with values for the parameters governing the population of a sample of

stock returns, we can exploit the probability density function of that population and

develop a notion of contagion that evolves from the skewness and tail heaviness of that

population. Namely, if we can access the joint PDF of the returns of a market X and

a market Y , since the parameters α and β govern characteristics of the distribution

that intuitively relate to contagion, we move towards a formal definition of contagion

between two markets as dependent on α and β.
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3

Methods

In the process of our estimation, we in general execute the following steps:

1. Using an Epanechnikov kernel weighting function, we estimate functions that

govern the stock returns on a foreign market given the stock returns in the

United States by fitting a local mean function to the data.

2. We extract the residuals from the results of the local mean function. After doing

so, we fit the residuals to a stable model using conditional Maximum Likelihood

Estimation (MLE).

3. Modeling the residuals using conditional MLE produces functions for the stable

parameters dependent on a point x in the support of the independent variable.

With these estimates in hand, we use a technique called bootstrapping to create

confidence intervals around our estimates at the points of interest within the

support of the independent data.

4. Finally, with the bootstrapped estimates in hand, we have the tools necessary

to create a measure of contagion independent of any assumption of normality,

which is the ultimate goal of this project. Specifically, we will construct and

execute a hypothesis test based on these bootstraps, under which the null hy-

pothesis will be that contagion does not exist between the U.S. and some other
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market, and conversely where the alternate hypothesis is that contagion does

exist between the U.S. market and some other market. These hypotheses will

depend on changes in α(x) and β(x) from the tail to the mean of the distribution

of the U.S. market returns.

3.1 Local Mean Estimation

As opposed most earlier studies on contagion, we will work with a non-linear

regression model similar to that of Bradley and Taqqu (2004). Our model, like Bradley

and Taqqu’s, is also non-parametric and assumes that X affects Y in two ways:

through a predictable component m and through an unpredictable component ε.

Both m and ε depend on the the level of the covariate X. In other words, we will

work with the model

Yt = m(Xt) + ε(Xt), (3.1)

in order to move toward a more robust definition of contagion. The ultimate goal

is to model the returns in a market Y given the returns in a market X and to

examine the residuals from this fit. In doing so, we will concentrate on movements

in Y unexplained by X, or more generally atypical association between a market

X and a market Y rather than the returns on Y given X, which is modeled by the

local mean function m(Xt). When attempting to characterize contagion, this atypical

association is precisely what we wish to study, which means we wish to extract the

residual structure ε(Xt).

In order to fit the local mean function with the end goal of modeling the residual

structure, we estimate m(Xt) using Mathematica code originally developed by Jeff

Hamrick and modified by the author [10]. Specifically, an estimate of the local mean

function is obtained by solving a weighted least squares problem using the Epanech-

nikov kernel, and then fitting a cubic spline to the data. The weighted least squares
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problem can be stated as
n∑
i=1

{Yi −
p∑
j=0

β(Xi − x0)
j}2K

(Xi − x0

h

)
, (3.2)

where in our case we fit a global polynomial, where p = 3, and where K is the

weighting function, which controls the amount of weight allocated to each point x0

in the independent data and hence the degree to which x0 affects m̂(x0). The re-

sult of solving this problem in Mathematica produces a cubic spline, which is the

value of the function m̂ and its first two derivatives at a given point x in the in-

dependent data. Ultimately, the spline is used to fit an interpolation function in

Mathematica, which takes in a discrete number of values for m̂(xt) (and its deriva-

tives) at each corresponding xt and fits a cubic between the triple produced by taking

{(xt−1, m̂(xt−1)), (xt, m̂(xt)), (xt+1, m̂(xt+1))} for each t. The result is a smooth func-

tion m̂ that is both continuous and differentiable for all x in the support of Xt.

In Figure 3.1, we see an example fit of an interpolation function to a cubic spline

produced by the local mean function. In red, the actual interpolation function is

displayed. The data modeled by the spline is shown in blue.

-3 -2 -1 1 2 3

-2

-1

1

Predicted values of Yt given a value of Xt

Figure 3.1: In red, an interpolation function generated in

Mathematica using the spline from the local mean pre-

dictions for yt given xt, in blue.

The term local alludes to the fact that m̂ is produced using a weighted least

squares model. In particular, at a given x, the estimation technique produces ŷ by
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taking into account only data that are relatively close in the distribution to x. This

estimation technique is preferable because it seems intuitively to be the case that

when predicting y at a given x, data closest to x in the distribution should have the

greatest affect on the prediction of y. In other words, outlying data is taken to be

negligible, so that a “local mean” relationship is modeled. The fit is local in so far

as the the least squares problem incorporates the weighting function K to assign less

weight to data farther from the point x. The width of the interval which is allowed

to affect the estimation of y at a given x is controlled by the parameter h, which we

refer to as the bandwidth of the kernel.

In the case of the local mean function, it has been shown that the best weighting

scheme is implemented using the Epanechnikov kernel [21], and as such we use the

Epanechnikov kernel in our estimation. In fact, we not only use the Epanechnikov

kernel to estimate m, but due to its widespread use in the literature, we also employ

the Epanenchnikov kernel in our “ad hoc” process to fit the a stable distribution to

the residual estimates of m. This process and the importance of the Epanechnikov

kernel to its implementation will be explored shortly.

3.2 Kernel Smoothing

Kernel Smoothing is a widely-used method in local polynomial fitting for allowing

only data in a certain neighborhood of a design point x to affect the prediction of

ŷ given x [7][20][22]. In particular, the Epanechnikov kernel has been shown to be

the best weighting scheme in the context of local polynomial fitting, or local mean

estimation, and has the form

Kh(x) =


1
h

3
4
(1− (x

h
)2) if −1 < x

h
< 1

0 otherwise.

Hence, for a given x0, values in a neighborhood determined by the choice of h,
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namely values x ∈ (x0 − h, x0 + h) receive weight, with x closer to the boundary of

the neighborhood receiving less weight than values of x closer to the center of the

neighborhood. Whereas values of x within the neighborhood about x0 receive weight,

values of x excluded from the neighborhood receive zero weight. Hence, as can be seen

in the weighted least squares problem (3.2), values of x outside of the neighborhood

determined by the choice of h have absolutely no influence on predicting y0 given x0.

For an example of the weights associated to x near x0, see Figure 3.2, where x0 = 0

and h = 2.

-6 -4 -2 2 4 6
Ind. Data

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Kernel Value
Epanechnikov Kernel with Bandwidth 2

Figure 3.2: An illustrative example for the Epanechnikov

Kernel with h set at 2.

3.3 Bandwidth Choice

The Epanechnikov kernel has one as of yet unexplained feature: the preferred

choice of h in the context of our estimation problem. More specifically, Fan and

Gibjels point out that local mean estimation depends crucially on two parameters,

one of which is the degree of the polynomial. In our case, we have pointed out that we

fit a global cubic polynomial. However, the bandwidth choice also crucially influences

our estimation in as much as it controls the sensitivity of the local mean function to

outliers. In the case of stock returns, the data are generally relatively spread out;

markets experience returns deep in both tails. As such, we must remain attentive
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the appropriate choice of h. Specifically, Fan and Gibjels provide a widely accepted

“rule of thumb” bandwidth selection tool that provides the “best” asymptotic choice

of h. This particular choice, the rule of thumb (ROT) bandwidth, was in the case of

our estimation computed using Mathematica with code converted from the MATLAB

code used to compute the rule of thumb bandwidths in the Bradley and Taqqu (2005)

study [4].

Problematically, the ROT bandwidth is susceptible to the same criticisms as much

of the earlier work on contagion in as much as the optimal bandwidth derived by Fan

and Gibjels assumes that the structure of Y |X = x is Gaussian. In our study, we

assume that the joint return distribution is instead stable, i.e., exhibits heavy tails

and skewness. Intuitively, heavy tailed data can be understood to be more spread out

than normally distributed data. As such, we believe that the optimal h computed

under the Fan and Gibjels model undersmooths the estimate, i.e., includes too little

data in the estimation of y given x. In response to this concern, an investigation of our

results was undergone with a variety of bandwidths, and we indeed found evidence

that the data remained undersmoothed given the ROT bandwidth provided by Fan

and Gibjels. In response, we reason that in order to include more data surrounding

a given x0, it seems plausible that we should use the ROT bandwidth as a minimum

requirement and scale it upwards by a some positive real number in order to achieve

appropriate smoothness. After comparing results under multiple bandwidths, we

chose to multiply hopt by the scalar 3.5.

3.4 Fitting the Residual Structure to a Stable Model

As previously mentioned, in this study we wish to investigate the atypical associ-

ation between the U.S. market and a given foreign market. As such, we remove the

“mean” association between the markets by fitting the local mean function and ex-

tracting the residuals from that fit. Ultimately, we assume that the residual structure
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is stable, i.e. ε(Xt) ∼ Sta(α, β, γ, δ), and we derive our new definition of contagion

by way of fitting a stable model to the set of residuals associated with the relation-

ship between the US market and some foreign market using Conditional Maximum

Likelihood Estimation.

3.5 Conditional Maximum Likelihood Estimation

In our study, as we have said, we will assume that

ε(x) ∼ Sta(α(x), β(x), γ(x), δ(x)), (3.3)

where α(x), β(x), γ(x), and δ(x) will be estimated by a conditional maximum likeli-

hood estimation method rather than the traditionally-used maximum likelihood esti-

mation (MLE) method.

In ordinary MLE, the “likelihood” function is globally maximized to produce the

“most likely” estimates for parameters which govern the distribution of the data.

In particular, let f(x; ~Θ) represent the probability density function governing the

data which is characterized by some vector of parameters ~Θ, and call the vector of

observed data ~X = {xt}nt=1 such that each xt is drawn at random from X, where X

is governed by the density function f . Ultimately, we want to discover what values

~Θ = Θ1,Θ2, ...,Θn are most likely to produce the data which we have drawn from the

population. Hence, in the case of MLE, we want to maximize

L( ~X; ~Θ) := f(x1, x1, ..., xn; ~Θ) = f(x1; ~Θ)f(x2; ~Θ)...f(xn; ~Θ) (3.4)

with respect to ~Θ. This maximization strategy will produce the desired estimates of

~Θ, assuming that the data are drawn at random from a population governed by f .

For a full treatment of MLE, see Freund [9].

In our case, we want to investigate the values of α and β at a given point in the

distribution of US stock returns, namely at a point deep in the left tail of the distribu-

tion and at a point at the median of the distribution. Using this strategy, we will be
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able to compare tail heaviness and skewness between “loss” days and “average” days

and hence develop a notion of contagion from one market to another by investigating

the change in these parameters from the median (associated with “average” days) to

the tail (associated with “loss” days) of the distribution. Unfortunately, the likeli-

hood function (3.4) does not provide us with the tools necessary to produce estimates

for α and β that are functions of x. If we have estimates α̂ and β̂ that depend on

x, where x is a design point located in the support of the independent data, we can

then investigate the values of the parameters conditioned on a point xL in the left

tail and a point xM at the median. Luckily, we have already been using a tool which,

when incorporated in the likelihood function, can condition the estimates produced

on a point x located in the distribution of the U.S. stock returns. So, we define the

conditional maximum likelihood function as

cl(x, h;~ε, ~X; ~Θ) :=
N∏
i=1

f(εi; ~Θ)Kh(x−Xi), (3.5)

where ~X is the independent data (U.S. market returns), ~ε is the vector of residuals

extracted from the original regression, f is the density of ε, i.e. the stable density,

~Θ is the parameters which govern the population of ε, i.e. (α, β, γ, δ), and where

K is the Epanechnikov kernel. Similarly to the case of the local mean function, the

kernel gives weight in the likelihood function only to data within an h-neighborhood

about a given x. In particular, this choice of x is left to be defined by the user of

the functions α̂ and β̂. Ultimately, we will be concerned with only two points in

the support of the U.S. returns–xL = F−1(.025) and xM = F−1(.5), where F is the

cumulative distribution function associated with the stable density.

3.6 Bootstrapping

The result of executing conditional MLE will produce functions for α̂ and β̂ which

depend on a given point x in the independent data set, the US market returns. For
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the given set of data, we will evaluate α̂ and β̂ at xL and xM , the loss tail and median

of the data, respectively, and consequently this technique will produce estimates of

the skewness and tail heaviness at the median xM and loss tail xL of the covariate

market X. Finally, we will compute α̂(xM)− α̂(xL) and β̂(xM)− β̂(xL). In as much

as these are estimates, confidence intervals must be produced around these estimates

if we desire to determine if these differences are significantly different from zero. In

order to accomplish this goal, we will bootstrap the results using Mathematica using

a permutation method. Specifically, we will abolish the relationship between the data

and reconstructed at random, and the results of the estimation (the production of

α̂(x) and β̂(x) at xM and xL) will be re-executed many times. In other words, if we

randomly permute the X and Y data 5000 times and recompute α̂(xM), α̂(xL), β̂(xM),

and β̂(xL) each time, we will have a fairly certain idea regarding the intervals in which

α(xM), α(xL), β(xM), and β(xL) lie, respectively. In other words, bootstrapping is

a method whereby we can attempt to reproduce the cumulative density function F

governing the distributions of α̂(x) and β̂(x) if H0 is true. Since we do not have any a

priori knowledge of what the true cumulative densities might be, this non-parametric

method is necessary if we wish to compute to test for the significance of our test

statistic. In other words, as a result of this bootstrapping method, we can compute

P(θ̂(xM)− θ̂(xL) < t) by

Number of bootstraps less than θ̂(xM)− θ̂(xL)

Total number of bootstraps

for β̂(x) and similarly for α̂(x). Put differently, we can compute the probability that

(assuming the null hypothesis is true) the statistics α̂(xM)−α̂(xL) and β(xM)−β(xL)

would actually occur. If this probability is small, then we conclude that the null

hypothesis is indeed not true and instead reject the null hypothesis in favor of some

appropriately defined alternate hypothesis, in our case the hypothesis that contagion

exists.
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4

A New Definition of Contagion

Equipped with the tools of conditional MLE and the power of bootstrapping, we

are ready to formally define contagion in terms of the stable model. Recall that in

our case, the stable model is attractive because we can estimate functions for α(x)

and β(x), which allow us to generate two new notions of contagion: the contagion

associated with the tail heaviness of Y |X = x and the contagion associated with the

skewness of Y |X = x. Explicitly stated, we will say that tail heaviness contagion

exists when α(xM) > α(xL), where α(xM) is the conditional tail heaviness at the

median of X, and α(xL) is the conditional tail heaviness in the loss tail of X. In other

words, when the tail of ε(x) is fatter given that x is large and negative, we know that

the structure of Y has changed for those “loss” values of x. In short, a crisis in X leads

to a greater probability that Y experiences an abnormally large loss. Additionally, we

will say that skewness contagion from X to Y exists when β(xM) > β(xL). Intuitively,

this definition corresponds to the phenomenon large negative values in X will skew

the data in Y leftward, introducing a greater probability that Y has a left-skewed

return, which again fits our general notion of contagion. Thus, formally, we state our

null and alternate hypotheses as

Hα,0: α(xM) ≤ α(xL).

Hα,1: α(xM) > α(xL).
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and

Hβ,0: β(xM) ≤ β(xL).

Hβ,1: β(xM) > β(xL).

We will test these hypothesis hypotheses using the permutation based bootstrapping

method detailed above.

4.1 Data

In order to remain congruent with measures of stock returns used in the literature,

we will use data similar to that used in earlier studies [5]. Specifically, we will use the

Morgan Stanley Capital International (MSCI) indices for the period from January

1980 to May 2002 to identify the presence (or lack thereof) of tail heaviness and/or

skewness contagion between the United States and the following international equity

markets:

1. Hong Kong

2. Japan

3. Australia

4. Belgium

5. Canada

6. France

7. Germany

8. Italy

9. The Netherlands

10. Switzerland

11. The United Kingdom

These data have been taken from Datastream, a financial services database, and

they adjust for discrepancies in time of operation and currency accross markets. Ad-

ditionally, we work with logarithmic return data.

4.2 Results

The remaining sections outline the results of our study on a country-by-country

basis. First however, we present in Table 4.1 and Table 4.2 summaries of the following

24



sub-sections. As the tables convey, we identify the presence of tail heaviness contagion

in zero cases out of the eleven countries tested. However, we do claim that skewness

contagion exists in five out of eleven cases, most of which are located in Europe.

We arrived at the following conclusions by executing 5000 bootstraps to construct

the empirical cumulative density functions of α̂(xM) − α̂(xL) and β̂(xM) − β̂(xL)

respectively by the process outlined above. If the p-value is less than .1, we reject the

null hypothesis (that contagion does not exist) and in favor of the null hypothesis,

and we claim that contagion exists between the U.S. and the respective dependent

market.

Country tail heaviness Contagion? P-value

Hong Kong No .634

Japan No .659

Australia No .175

Belgium No .617

Canada No .160

France No .710

Germany No .562

Italy No .468

The Netherlands No .503

Switzerland No .108

The United Kingdom No .708

Table 4.1: A table of results for testing for tail heaviness contagion characterized by

changes in α̂(x) from the tail of the independent data to the mean.

It must be noted that the lack of existence of tail heaviness contagion between the

U.S. market and any covariate market seems suspicious. This could be due to the

25



Country Skewness Contagion? P-value

Hong Kong No .152

Japan No .756

Australia No .248

Belgium No .473

Canada Yes .037

France Yes .094

Germany Yes .064

Italy Yes .062

The Netherlands Yes .024

Switzerland No .204

The United Kingdom No .288

Table 4.2: A table of results for testing for skewness contagion characterized by

changes in β̂(x) from the tail of the independent data to the mean.

fact that in the sense in which we define contagion, tail heaviness contagion simply

does not exist. In fact, we have observed evidence that the function α̂(x) in most

cases remains constant across nearly the entire range of the U.S. return data, such

as in the Figure 4.1 below. However, the functions associated with the skewness

in the data seem more intuitively reasonable, as we can see in Appendix A. Some

concluding remarks about these issues are made after the presentation of the results

specific to each market below. Additionally, while the functional estimates for δ and

γ are uninteresting for the purposes of our study, they are also listed in Appendix A

in a similar format to that of Figure 4.1.

We will now discuss in more detail the results for each country.
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Figure 4.1: Graphs of α̂, β̂, γ̂, and δ̂ for the Hong

Kong market.

4.2.1 Hong Kong

Country α̂(xM)− α̂(xL) β̂(xM)− β̂(xL)

Hong Kong -.02224778 .137369

Table 4.3: The observed values of α̂(xM) − α̂(xL) and

β̂(xM)− β̂(xL) for Hong Kong.

In the case of the Hong Kong market, we concluded that contagion between it

and the US market does not exist under our statistical measure in neither the case

of the tail heaviness contagion associated with the parameter α nor in the case of

the skewness contagion associated with the parameter β. In Table 4.3 are values

for α̂(xM) − α̂(xL) and β̂(xM) − β̂(xL). In Figure 4.2, it is easily observed that in
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both cases, the test statistic listed in Table 4.3 is not in the tail of the empirical

distribution constructed by our bootstrapping method. Hence, we calculate the high

p-values listed in Tables 4.1 and 4.2. As is customary in statistics when faced with a

high p-value, we fail to reject the null hypotheses, and we conclude that neither tail

heaviness nor skewness contagion exists.
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Figure 4.2: The empirical density when H0 is true along

with the test statistics for α̂ and β̂ for Hong Kong.
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4.2.2 Japan

Country α̂(xM)− α̂(xL) β̂(xM)− β̂(xL)

Japan -.0507058 -.17544

Table 4.4: The observed values of α̂(xM) − α̂(xL) and

β̂(xM)− β̂(xL) for Japan.

In the case of the Japanese market, we again concluded that contagion does

not exist between it and the US market under either statistic we have defined, which

produced the test statistics in Table 4.4 as values for α̂(xM)−α̂(xL) and β̂(xM)−β̂(xL).

In Figure 4.3, it is easily observed that in both cases, the test statistic listed in Table

4.4 is not in the tail of the empirical distribution constructed by our bootstrapping

method. Hence, we calculate the high p-values listed in Tables 4.1 and 4.2. As

is customary in statistics when faced with a high p-value, we fail to reject the null

hypotheses, and we conclude that neither tail heaviness nor skewness contagion exists.
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Figure 4.3: The empirical density when H0 is true along

with the test statistics for α̂ and β̂ for Japan.
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4.2.3 Australia

Country α̂(xM)− α̂(xL) β̂(xM)− β̂(xL)

Australia .0734785 .264237

Table 4.5: The observed values of α̂(xM) − α̂(xL) and

β̂(xM)− β̂(xL) for Australia.

In the case of the Australian market, we again conclude that contagion does

not exist between it and the US market under either statistic we have defined, which

produced the test statistics in Table 4.5 as values for α̂(xM)−α̂(xL) and β̂(xM)−β̂(xL).

In Figure 4.4, it is easily observed that in both cases, the test statistic listed in Table

4.5 is not in the tail of the empirical distribution constructed by our bootstrapping

method. Hence, we calculate the high p-values listed in Tables 4.1 and 4.2. Thus,

we fail to reject the null hypotheses, and we conclude that neither tail heaviness nor

skewness contagion exists.
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Figure 4.4: The empirical density when H0 is true along

with the test statistics for α̂ and β̂ for Australia.
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4.2.4 Belgium

Country α̂(xM)− α̂(xL) β̂(xM)− β̂(xL)

Belgium -.0222803 .0142234

Table 4.6: The observed values of α̂(xM) − α̂(xL) and

β̂(xM)− β̂(xL) for Belgium.

In the case of the Belgian market, we again conclude that contagion does not

exist between it and the US market under either statistic we have defined, which

produced the test statistics in Table 4.6 as values for α̂(xM)−α̂(xL) and β̂(xM)−β̂(xL).

In Figure 4.5, it is easily observed that in both cases, the test statistic listed in Table

4.6 is not in the tail of the empirical distribution constructed by out bootstrapping

method. Hence, we calculate the high p-values listed in Tables 4.1 and 4.2. Thus,

as is customary in statistics when faced with a high p-value, we fail to reject the

null hypotheses, and we conclude that neither tail heaviness nor skewness contagion

exists.
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Figure 4.5: The empirical density when H0 is true along

with the test statistics for α̂ and β̂ for Belgium.
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4.2.5 Canada

Country α̂(xM)− α̂(xL) β̂(xM)− β̂(xL)

Canada .0754104 .60473

Table 4.7: The observed values of α̂(xM) − α̂(xL) and

β̂(xM)− β̂(xL) for Canada.

In the case of the Canadian market, we again concluded that contagion between

it and the US market does not exist in the case of the tail heaviness definition of con-

tagion associated with the parameter α. However, we do see evidence that skewness

contagion exists, which means that given that a crisis has occurred in the U.S. mar-

ket, the probability of a crisis occurring in the Australian market increases, though

not outsizedly. We come to this conclusion based on the relatively low p-value in

Table 4.2 and the relatively large statistic for β̂(xM) − β̂(xL) seen in Table 4.7. As

we can see in Figure 4.6, the p-value for the hypothesis test is far in the right tail, so

we reject the null hypothesis in the case of skewness contagion, and we conclude that

skewness contagion does indeed exist.
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Figure 4.6: The empirical density when H0 is true along

with the test statistics for α̂ and β̂ for Canada.

32



4.2.6 France

Country α̂(xM)− α̂(xL) β̂(xM)− β̂(xL)

France -.0400363 .406679

Table 4.8: The observed values of α̂(xM) − α̂(xL) and

β̂(xM)− β̂(xL) for France.

In the case of the French market, we again concluded that contagion between it

and the US market does not exist in the case of the tail heaviness definition of con-

tagion associated with the parameter α. However, we do see evidence that skewness

contagion exists, which means that given that a crisis has occurred in the U.S. mar-

ket, the probability of a crisis occurring in the Australian market increases, though

not outsizedly. We come to this conclusion based on the relatively low p-value in

Table 4.2 and the relatively large statistic for β̂(xM) − β̂(xL) seen in Table 4.8. As

we can see in Figure 4.7, the p-value for the hypothesis test is far in the right tail, so

we reject the null hypothesis in the case of skewness contagion, and we conclude that

skewness contagion does indeed exist.
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Figure 4.7: The empirical density when H0 is true along

with the test statistics for α̂ and β̂ for France.
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4.2.7 Germany

Country α̂(xM)− α̂(xL) β̂(xM)− β̂(xL)

Germany -.0305202 .907952

Table 4.9: The observed values of α̂(xM) − α̂(xL) and

β̂(xM)− β̂(xL) for Germany.

In the case of the German market, we again concluded that contagion between

it and the US market does not exist in the case of the tail heaviness definition of con-

tagion associated with the parameter α. However, we do see evidence that skewness

contagion exists, which means that given that a crisis has occured in the U.S. market,

the probability of a crisis occurring in the Australian market increases, though not

outsizedly. We come to this conclusion based on the relatively low p-value in Table

4.2 and the relatively large statistic for β̂(xM)− β̂(xL) seen in Table 4.9. As we can

see in Figure 4.8, the p-value for the hypothesis test is far in the right tail, so we

reject the null hypothesis in the case of skewness contagion, and we conclude that

skewness contagion does indeed exist.

-0.1 0.0 0.1 0.2 0.3

0.05
0.10
0.15
0.20
0.25

ΑHxL Bootstrap: Germany

-0.5 0.0 0.5 1.0

0.05
0.10
0.15
0.20
0.25

ΒHxL Bootstrap: Germany

Figure 4.8: The empirical density when H0 is true along

with the test statistics for α̂ and β̂ for Germany.
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4.2.8 Italy

Country α̂(xM)− α̂(xL) β̂(xM)− β̂(xL)

Italy -.00105876 .446727

Table 4.10: The observed values of α̂(xM) − α̂(xL) and

β̂(xM)− β̂(xL) for Italy.

In the case of the Italian market, we again concluded that contagion between

it and the US market does not exist in the case of the tail heaviness definition of con-

tagion associated with the parameter α. However, we do see evidence that skewness

contagion exists, which means that given that a crisis has occured in the U.S. market,

the probability of a crisis occurring in the Australian market increases, though not

outsizedly. We come to this conclusion based on the relatively low p-value in Table

4.2 and the relatively large statistic for β̂(xM) − β̂(xL) seen in Table 4.10. As we

can see in Figure 4.9, the p-value for the hypothesis test is far in the right tail, so

we reject the null hypothesis in the case of skewness contagion, and we conclude that

skewness contagion does indeed exist.
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Figure 4.9: The empirical density when H0 is true along

with the test statistics for α̂ and β̂ for Italy.
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4.2.9 The Netherlands

Country α̂(xM)− α̂(xL) β̂(xM)− β̂(xL)

The Netherlands -.00888951 .711299

Table 4.11: The observed values of α̂(xM) − α̂(xL) and

β̂(xM)− β̂(xL) for the Netherlands.

In the case of the Dutch market, we again concluded that contagion between it

and the US market does not exist in the case of the tail heaviness definition of con-

tagion associated with the parameter α. However, we do see evidence that skewness

contagion exists, which means that given that a crisis has occurred in the U.S. market,

the probability of a crisis occurring in the Australian market increases, though not

outsizedly. We come to this conclusion based on the relatively low p-value in Table

4.2 and the relatively large statistic for β̂(xM)− β̂(xL) seen in Table 4.11. As we can

see in Figure 4.10, the p-value for the hypothesis test is far in the right tail, so we

reject the null hypothesis in the case of skewness contagion, and we conclude that

skewness contagion does indeed exist.
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Figure 4.10: The empirical density when H0 is true along

with the test statistics for α̂ and β̂ for the Netherlands.
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4.2.10 Switzerland

Country α̂(xM)− α̂(xL) β̂(xM)− β̂(xL)

Switzerland .108323 .36502

Table 4.12: The observed values of α̂(xM) − α̂(xL) and

β̂(xM)− β̂(xL) for Switzerland.

In the case of the Swiss market, we again concluded that contagion does not exist

between it and the U.S. market under either statistic we have defined, which produced

the test statistics in Table 4.12 as values for α̂(xM)− α̂(xL) and β̂(xM)− β̂(xL). In

Figure 4.11, it is easily observed that in both cases, the test statistic listed in Table

4.12 is not in the tail of the empirical distribution constructed by out bootstrapping

method. Hence, we calculate the high p-values listed in Tables 4.1 and 4.2. As is

customary in statistics when faced with a high p-value, we fail to reject the null

hypotheses, and we conclude that neither tail heaviness nor skewness contagion exist.
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Figure 4.11: The empirical density when H0 is true along

with the test statistics for α̂ and β̂ for Switzerland.
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4.2.11 The United Kingdom

Country α̂(xM)− α̂(xL) β̂(xM)− β̂(xL)

The United Kingdom -.0267801 .133274

Table 4.13: The observed values of α̂(xM) − α̂(xL) and

β̂(xM)− β̂(xL) for the United Kingdom.

In the case of the British market, we again concluded that contagion does not

exist between it and the U.S. market under either statistic we have defined, which

produced the test statistics in Table 4.2.11 as values for α̂(xM)− α̂(xL) and β̂(xM)−

β̂(xL). In Figure 4.12, it is easily observed that in both cases, the test statistic listed

in Table 4.2.11 is not in the tail of the empirical distribution constructed by out

bootstrapping method. Hence, we calculate the high p-values listed in Tables 4.1 and

4.2. As is customary in statistics when faced with a high p-value, we fail to reject the

null hypotheses, and we conclude that neither tail heaviness nor skewness contagion

exists.
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Figure 4.12: The empirical density when H0 is true along

with the test statistics for α̂ and β̂ for the United King-

dom.
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4.3 Conclusions

A natural question to ask of the results of a study such as this one concerns

how they apply to “the real world.” For financial mathematicians, this study lays

a foundation for using a stable model to quantify contagion between international

equity markets. More problematically, it also supports the notion that, in some sense,

that contagion, although theoretically intuitive, is difficult to define in practice. For

example, our results in the case of tail heaviness contagion largely disagreed with

those of Bradley and Taqqu. In the case of skewness contagion, our results and the

result of Bradley and Taqqu were slightly more congruent, but certainly not identical.

However, Bradley and Taqqu’s definition of contagion is a completely different notion,

and relies on fundamentally different assumptions. In any case, while both attempts

at defining contagion make sense intuitively, the fact that neither agree could indicate

that contagion is simply quite difficult to define in practice.

It must be mentioned that additional research in the area of fitting a condition-

ally stable models to return data in order to identify contagion would be extremely

complimentary to this study. In particular, a re-execution of this study with newer

data would better our understanding of contagion in current markets, given that fun-

damental changes to world markets have occurred since 2002. In as much as the

relationships between markets could have changed since the end of our data, it is

dangerous to claim that contagion exists between the U.S. market and a covariate

market based on a study that does not include the latest data. However, the fact

that this study has been completed would make such a re-execution fairly easy given

the appropriate return data.

Another area for potentially improved understanding of this methodology exists

in the opportunity to discover the asymptotic behavior of α̂ and β̂, either pointwise

or in some other sense. In particular, if we could discover the distribution of the two

statistics as the sample size goes to infinity, we could forgo the bootstrapping method

used in this study and remove the fog of war from our estimation strategy. Because
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bootstrapping is attractive by virtue of its non parametric nature, we do have some

right to claim that it is the best method. However, knowing the asymptotics of α̂ and

β̂ would be both informative and ease the computationally expensive method that

repeatedly fitting a conditionally stable model entails.

Finally, expanding this study to consider a wider range of markets might be at-

tractive to some financial practitioners. For example, the relationship between the

Chinese and U.S. markets is arguably a complicated one, and is hard to model be-

cause of the high level of regulation and market manipulation that occurs in the

Chinese market. However, in as much as practitioners invest in the Chinese market,

they would presumably like to have a better knowledge of how it is related to other

markets so as to minimize their accidental exposure to risk. With data that properly

quantifies the movement of the Chinese market in hand, a study on contagion between

the U.S. and Chinese market, or any of the asian markets for that matter, could be

an informative.

40



Bibliography

[1] Alder, R.J., Feldman, R.E., and M.S. Taqqu, editors. A Practical Guide to Heavy

Tails: Statistical Techniques and Applications. Boston: Birkhauser. 1998.

[2] Boyer, B., Gibson, M. & Loretan, M. “Pitfalls in Tests for Changes in Corre-

lations.” Technical report, Board of Governors of the Federal Reserve System.

International Finance Discussion Paper, 1999.

[3] Black, F. and M. Scholes. “The Pricing of Options and Corporate Liabilities.”

Journal of Political Economy. Volume 81:3, pp. 637-654. 1973.

[4] Bradley, Brendan O. & Taqqu, Murad S. “Framework for Analyzing Spatial Con-

tagion Between Financial Markets.” Financial Letters, 2 (6), 8-15. 2004.

[5] Bradley, Brendan O. & Taqqu, Murad S. “Empirical Evidence on Spatial Conta-

gion Between Financial Markets.” Finance Letters, 3 (1), 77-86. 2005.

[6] Fan, J. & Gijbels I. “Data-Driven Bandwidth Selection in Local Polynomial Fit-

ting: Variable Bandwidth and Spatial Adaptation.” Journal of the Royal Statis-

tical Society. Series B (Methodological), Vol. 57, No. 2, pp. 371-394. 1995.

[7] Fan, J., Gasser, T., Gijbels, I., Brockmann, M. and Engel, J. “Local Polyno-

mial Fitting: A standard for nonparametric regression.” Discussion paper 9315.

Institute of Statistics, Catholic University of Louvian, Louvain-la-Nueve. 1993.

[8] Forbes, K. & Rigobon, R. “No Contagion, only Interdependence: Measuring Stock

Market Comovements.” Journal of Finance LVII(5), 223-2261. 2002.

41



[9] Freund, John E. “Mathematical Statistics.” Prentice Hall. Upper Saddle River,

New Jersey. 1999.

[10] Hamrick, J. “Estimating the Local Mean Function.” The Wolfram Demonstra-

tions Project.

http://demonstrations.wolfram.com/EstimatingTheLocalMeanFunction/

[11] Hamrick, J. & Taqqu, M.S. “Contagion and Confusion in Credit Default Swap

Markets.” April 6, 2009.

[12] Mandelbrot, Benoit.“The Variation of Certain Speculative Prices,” Journal of

Business, 36, 394-419. 1963

[13] Fama, E.F. “Portfolio Analysis in a Stable Paretian Market.” Management Sci-

ence, 1965, 11(3, Series A, Sciences), pp. 404-19.

[14] Freund, John E. Mathematical Statistics. Prentice Hall. Upper Saddle River,

New Jersey. 1999.

[15] Muecci, A. Risk and Asset Allocation. Berlin: Springer-Verlag. 2005.

[16] Nolan, J.P. Stable Distributions: Models for Heavy Tailed Data. American Uni-

versity. May 13,2009.

[17] Pericoli, M. and Sbracia, M. “A Primer on Financial Contagion.” Journal of

Economic Surveys, 17: 571608. doi: 10.1111/1467-6419.00205. 2003

[18] Reiss, R. and M. Thomas. Statistical Analysis of Extreme Values, With Appli-

cations to Insurance, Finance, Hydrology and Other Fields. Basel: Birkhauser-

Verlag. 2001.

[19] Roll, R. The Behavior of Interest Rates. New York: Basic, 1970.

[20] Ruppert, D. and Wand, M.P. “Multivariate locally weighted least squares regres-

sion.” Ann. Statist. 1994.

42



[21] Samiuddin, M. and G. M. El-Sayyad. “On Nonparametric Kernel Density Esti-

mates.” Biometrika, Vol. 77, No. 4 (Dec., 1990), pp. 865-874.

[22] Stone, C.J. “Consistent nonparametric regression.” Ann. Statist., 5, 595-645.

1997.

43



Appendix A

A.1 Hong Kong
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Figure A.1: Graphs of α̂, β̂, γ̂, and δ̂
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A.2 Japan
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Figure A.2: Graphs of α̂, β̂, γ̂, and δ̂
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A.3 Australia
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Figure A.3: Graphs of α̂, β̂, γ̂, and δ̂
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A.4 Belgium
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Figure A.4: Graphs of α̂, β̂, γ̂, and δ̂
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A.5 Canada
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Figure A.5: Graphs of α̂, β̂, γ̂, and δ̂
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A.6 France

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.5

1.0

1.5

The estimate for ΑHxL
-1.5 -1.0 -0.5 0.5 1.0 1.5

-0.4

-0.3

-0.2

-0.1

The estimate for ΒHxL

-1.5 -1.0 -0.5 0.5 1.0 1.5

-0.02

-0.01

0.01
The estimate for ΓHxL

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8
The estimate for ∆HxL

Figure A.6: Graphs of α̂, β̂, γ̂, and δ̂
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A.7 Germany
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Figure A.7: Graphs of α̂, β̂, γ̂, and δ̂
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A.8 Italy
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Figure A.8: Graphs of α̂, β̂, γ̂, and δ̂
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A.9 The Netherlands
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Figure A.9: Graphs of α̂, β̂, γ̂, and δ̂
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A.10 Switzerland

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.5

1.0

1.5

The estimate for ΑHxL

-1.5 -1.0 -0.5 0.5 1.0 1.5

-0.4

-0.3

-0.2

-0.1

0.1

The estimate for ΒHxL

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.005

0.010

0.015
The estimate for ΓHxL

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7
The estimate for ∆HxL

Figure A.10: Graphs of α̂, β̂, γ̂, and δ̂
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A.11 The United Kingdom

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.5

1.0

1.5

The estimate for ΑHxL

-1.5 -1.0 -0.5 0.5 1.0 1.5

-0.25

-0.20

-0.15

-0.10

-0.05

The estimate for ΒHxL

-1.5 -1.0 -0.5 0.5 1.0 1.5

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

The estimate for ΓHxL

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.1

0.2

0.3

0.4

0.5

0.6

The estimate for ∆HxL

Figure A.11: Graphs of α̂, β̂, γ̂, and δ̂
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