
 Syllabus

Computer Science II: Object – Oriented Programming Spring 2012
COMP 142 CRN # 22269

Basic Info:

 Monday, Wednesday, Friday 12:00 pm – 12:50 pm

 Classroom: Barret 035

Instructor:

 Betsy (Williams) Sanders
o Office: Olendorf 419
o Office Phone: 901.843.3791
o Email*: sandersb@rhodes.edu

*To ensure a quick response, the subject line of your email should read “cs142: [subject of question]”
NOTE: I will respond to your emails within 24 hours on weekdays and 48 hours on weekends

Office Hours:

 Tues/Thurs 1:30 pm – 3:00 pm, or by appointment

 Please come to office hours! I am here to help.

Peer Tutoring Hours:

 Teaching Assistant: Jeremey Key (keyjb@rhodes.edu) and TBA

 Hours: TBA

 Location: Barret 033 or 035 (TBA)

 You should plan to come and work on your assignments when the TA is around so that you can get
help as needed.

Textbook:

 The course textbook is C++ How to Program, 8
th
 ed., by Deitel and Deitel

 A useful online reference is http://cplusplus.com

My Public Folder:

 I will make programs that we discuss in class available to you in my public folder. Also, if I distribute
any materials in class, I will put a digital copy in my public folder. You can find it on the network:
\\Acad_Dept_Pgm\Math_CompSci\Sanders_Betsy\Public\CS142

Prerequisites:

 The course assumes successful completion of CS141 (a grade of C- or better) or significant
programming experience. Please come see me if you have not had CS141.

Course Description:

 CS142 is the second course in the sequence for computer science majors or minors and ideally
should be taken immediately after CS141. CS142 offers a new perspective on software design
through an introduction of the object-oriented paradigm. Special emphasis is placed on the process
of building hierarchies of abstractions to hide implementation details through a careful and
systematic analysis of problems of moderate complexity. Various design approaches will be
explored with the goal of identifying the situations for which each approach is applicable. In addition
the course will cover classic data structures, generic programming, and basic memory management
techniques.

 This course will use the C++ programming language as the vehicle for exploration of fundamental
computer science concepts. However, this is not a course about C++; it is about the structure and
interpretation of computer programs.

 The particular C++ environment that will be used in this course is available in the computer labs on
Rhodes College campus. Check the postings at Paul Barret Jr. Library for the hours of operation
and locations of the on-campus computer labs.

mailto:sandersb@rhodes.edu
mailto:keyjb@rhodes.edu

 You are free to develop the code for the assignments on your own computer using an environment
of your choice. However, keep in mind that the source code that you submit for the homework
assignments must compile successfully on the computers in the on-campus lab.

Course Objectives:

 At the end of this course, you should be able to:
o Explain and use the basic principles of object-oriented design
o Make design decisions that promote reusable code
o Analyze problems of moderate complexity and propose a design of hierarchies of

independent entities that communicate through a clear and well-defined interface
o Use and implement rudimentary data structures such as linked lists, stacks, queues
o Use generic programming and be familiar with the Standard Template Library

Course Outline:

 The course will cover the following topics (not necessarily in this order):
o C++ basics
o Objects and classes
o Object-oriented design
o Inheritance and polymorphism
o Operator overloading
o Pointers and memory management
o Parameterized classes (templates)
o The Standard Template Library
o Simple data structures (linked lists, stacks)

Workload:

 It is important to stay current with the material. You should be prepared to devote regular weekly
hours to this course. More specifically, you should devote at least 2-3 hours for each in class
lecture. You should expect to spend significant amount of preparation for this course working on a
computer to try out example programs and to develop the programming assignments. Do not wait
to the last minute to start your programming assignments.

 You are encouraged to form study groups with colleagues from the class. The goal of these groups
is to clarify and solidify your understanding of the concepts presented in class, and to provide for a
richer and more engaging learning experience. However, you are expected to turn in your own code
that represents the results of your own effort.

Programming Assignments:

 All programs assigned in this course must be written in C++. Unless otherwise stated, submit only
C++ source files (.cpp, .h) and not other files generated by Visual Studio (e.g, .exe, .obj,

.pdb).

 The first line of each program source code file submitted for credit must be a comment that states
your name and the assignment number.

 Each student is responsible for keeping a back-up copy on disk/USB of all source code turned in for
an assignment. Failure to do so could result in loss of credit for an assignment.

 Assignments should be dropped in my Inbox on the day they are due (before class, 11:59 am).
Projects received after 12:00 pm on the date due are considered late.

 LATE programs will be accepted, with a penalty of one letter grade per day. If you send a late
assignment, you need to email me so that I know to check my Inbox for it and grade it. (If a genuine
emergency situation arises, please see me and we will work something out.)

 Collaboration: You are expected to work individually on assigned programs. Please see the Rules
for Completing Assignments Independently section on this syllabus for further details.

 Programming grades will be graded on correctness, style AND efficiency. You will receive a
handout that further expands this idea. This document addresses things like good variable names,
how to comment your code appropriately, code organization, debugging techniques, etc.

 Grades are assigned to programs as follows by this general guideline:
o A (100 pts): Program is carefully designed, efficiently implemented, well documented, and

produce clearly formatted, correct output.

o A- (94 pts): This is an „A‟ program with possibly one or two of the minor problems described
for grade „B‟.

o B (88 pts): A „B‟ program typically could easily have been an „A‟ program, but it may have
minor/careless problems such as poor, inadequate, or incomplete documentation; several
literal values where symbolic constants would have been appropriate; wrong file names
(these will be specified per program assignment); sloppy source code format; minor
efficiency problems; etc. (This is not an exhaustive list.) You would be wise to consider „B‟
the default grade for a working program --- this might encourage you to review and polish
your first working draft of an assignment to produce a more professional quality final version
of your program.

o C (75 pts): A „C‟ program has more serious problems: incorrect output for important special
cases (the "empty" case, the "maxed-out" case, etc.), failure to carefully follow design and
implementation requirements spelled out in the assignment description, very poor or
inefficient design or implementation, near complete absence of documentation, etc.

o D: (60 pts): A „D‟ program compiles, links, and runs, but it produces clearly incorrect output
for typical cases. Or, it may deviate greatly from the design or implementation requirements
stated in the assignment description.

o F (35 pts): Typically, an „F‟ program produces no correct output, or it may not even compile.
It may “look like a program” when printed as a hard copy, but there remains much work to
be done for it to be a correct, working program.

Rules for Completing Assignments Independently (compliments of Mike Sheard)

 Unless otherwise specified, programming assignments handed in for this course are to be done
independently.

 Talking to people (faculty, other students in the course, others with programming experience) is one
of the best ways to learn. I am always willing to answer your questions or provide hints if you are
stuck. But when you ask other people, what constitutes legitimate assistance, and when does it
cross the border and become cheating? As a practical guide, use the following rule:

o RULE: In working on an assignment, you cannot look at any correct program or correct
piece of code for the same assignment which someone else has written.

 Here are some sample applications of this rule:
o If my program does not work, may I ask another student to see if she can spot what is

wrong with it?
Answer: Yes, since you are showing her incorrect code.

o May she suggest the needed changes? (E.g.: “You need to assign x = 0 up here.”)
Answer: Yes.

o May she write the needed changes for me?
Answer: No, since then she would be showing you correct code.

o May she show me one of her programs from earlier in the course which uses the same
technique?
Answer: Yes, since that is not for the same assignment.

o May two of us compare the outputs from our programs?
Answer: Yes. Output is not program code.

o If our outputs differ, may we compare our programs to see what the difference is?
Answer: No. Assume one of them is correct; the other person should not be looking at it.

 The underlying idea is that you are entitled to seek assistance in ways which will genuinely help you
to learn the material (as opposed to just getting the assignment done). Programming assignments
are graded as a benefit to you; they are your chance to show what you have learned under
circumstances less stressful than an exam. In return, I ask only that your work fairly reflect your
understanding and your effort in the course.

Exams:

 There will be two preliminary exams and one final exam:
o Prelim 1: Friday, February 24

th
, in class.

o Prelim 2: Friday, April 13
th
, in class.

o Final Exam (pick one of the following):
 Friday, May 4

th
 at 1:00 pm in Barret 035

 Friday, May 4
th
 at 11:00 am in our classroom, Barret 020 (this is COMP172‟s

official exam time)
 Tuesday, May 1

st
 at 1:00 pm in Olendorf 225

 These exams will be closed-notes, closed-book, and closed-neighbor. Exam work will represent
your own individual effort.

 Make-up exams will only be given in extreme circumstances.

Quizzes:

 We will have frequent 3 – 7 minute quizzes composed of 1 – 3 questions.

 The purpose of these quizzes is to make sure you keep current with the material and to help me
keep track of your understanding.

Grade Breakdown:

 45 % Programs

 10 % Quizzes

 25 % Preliminary Exams

 20 % Final Exam

 Note: You are responsible for keeping track of your grades. I do not use an online gradebook.
Here is how your final average will be calculated:

 Final Average= 45 * (sum of all your program grades)/(total # of points on all programs) + 10* (sum of your quiz
 grades)/(total # points on all quizzes)+ 25 * (sum of Prelim1 and Prelim2)/(200) + 20 * (your final exam

grade)/(100)

Grade Assignments:

 Grading is based on the below scale:
o A : [93%, 100%]
o A- : [90%, 93%)
o B+ : [87%, 90%)
o B : [83%, 87%)
o B- : [80%, 83%)
o C+ : [77%, 80%)
o C : [73%, 77%)
o C - : [70%, 73%)
o D : [65%, 70%)
o D- : [60%, 65%)
o F : [0%, 60%)

 For borderline cases, I may take into account participation, and/or attendance, and improvement
during the semester.

Attendance:

 Attendance is expected for each class as material that is not covered in the book may appear in
class. If your attendance deteriorates you will be referred to the Dean and asked to drop the
course. Attendance, participation, and apparent overall improvement may also be considered when
assigning a final grade.

 Attendance will be checked each class lecture.

 After 5 unexcused absences, I reserve the right to reduce the final letter grade for the course by one
letter grade for each additional absence.

Special Accommodation:

 If you are in need of special accommodations, please register with the Office of Student Disability
Services (http://www.rhodes.edu/disability) as soon as possible so that all necessary arrangements can
be made.

Scholastic Behavior

 Plagiarism, cheating, and similar anti-intellectual behavior are serious violations of academic ethics and
will be correspondingly penalized. If you are concerned about a possible violation of this kind, please

http://www.rhodes.edu/disability

talk with me. I understand the pressure that students may experience while at Rhodes, and I will try to
help as best as I can.

 All programs must be the student‟s own work and represent the student‟s individual effort as defined in
the Rules for Completing Assignments Independently Section, unless otherwise instructed by me.
These are all included in the definition of reportable Honor Code violations for this course:

o Copying all or part of a problem, downloading solutions from the internet and submitting it
as your own, having someone else provide the solution for you, or allowing someone else to
copy from you.

 If you have any doubt about what type of behavior is acceptable, please clear it with me.

 When you come to class, you are expected to pay attention! Cell phones are strictly prohibited.

Important Dates

 Drop Add Ends: 1/18/2012

 Extended Drop Period and Pass Fail Period End: 2/1/2012

 Withdrawal Period Ends: 3/23/2012

