

I give permission for public access to my Honors paper and for any copying

or digitization to be done at the discretion of the College Archivist and/or the

College Librarian.

Signed___

Rui Liu

Date __________________________

A Set Partition Analog of the Erdös-Szekeres Theorem

Rui Liu

Department of Mathematics and Computer Science

Rhodes College

Memphis, Tennessee

2013

Submitted in partial fulfillment of the requirements for the

Bachelor of Science degree with Honors in Mathematics

ii

Signature Page

iii

Contents

Signature Page . ii
List of Figures . iv
Abstract . v

1 Background 1
1.1 The Longest Monotonic Subsequence Problem 1
1.2 The Erdös-Szekeres Theorem . 1

2 Set Partitions 3
2.1 Definitions . 3
2.2 The Number of Set Partitions . 5

3 Representations of A Set Partition 6
3.1 Restricted Growth Functions . 6
3.2 The Interval Scheduling Problem . 8
3.3 The Weighted Scheduling Problem 9
3.4 The Hypergraph Vertex Cover Problem 10

4 Algorithms 13
4.1 The Dynamic Programming Approach 13
4.2 The Greedy Approach . 13

4.2.1 The Naive Greedy Approach 14
4.2.2 A “Complete” Greedy Approach 18
4.2.3 Evaluation of Performance . 20

5 A Ramsey Theoretic Theorem 21

6 Conclusion 23

iv

List of Figures

1 The interval representation of a set partition 9
2 An example of the weighted scheduling problem 10
3 An example of a hypergraph and its minimum size vertex cover . . . 11

v

Abstract

A Set Partition Analog of the Erdös-Szekeres Theorem

by

Rui Liu

The monotonic subsequence problem has been studied in depth.

Mathematicians and theoretical computer scientists have found and

proved various results such as the Erdös-Szekeres Theorem and have

studied algorithms to find longest monotonic subsequences. The objec-

tive of my project is to establish the counterparts of the results men-

tioned above in the context of set partitions, namely the heaviest free

subpartition problem. More specifically, I introduce concepts such as

“subpartition”, “freeness” and other related terms to formulate the free

subpartition problem. Then, I discuss various representations of the

problem and evaluate the relationship between this problem and other

widely studied algorithmic problems. Finally, I analyze the difficulties

we encountered and present a “greedy” algorithm that approximates

the optimal solution.

1

1 Background

1.1 The Longest Monotonic Subsequence Problem

In mathematics and theoretical computer science, the longest increasing (decreasing)

subsequence problem is to find a subsequence of a given sequence in which the sub-

sequence elements are in sorted order, lowest to highest (highest to lower), and in

which the subsequence is as long as possible. For example, in the following sequence

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

a longest increasing subsequence is

0, 2, 6, 9, 13, 15

This subsequence has length 6, and there is not any subsequence of length 7.

It is noteworthy that this longest increasing (decreasing) subsequence is not neces-

sarily contiguous or unique. For instance,

0, 4, 6, 9, 11, 15

is another increasing subsequence of length 6. Also, neither of these two subsequences

above are consecutive subsequences.

1.2 The Erdös-Szekeres Theorem

A classic theorem of Paul Erdös and George Szekeres [3] regarding the longest in-

creasing(decreasing) subsequence problem states that

Theorem From a sequence of n2 + 1 distinct real numbers we can always extract a

monotonic subsequence of length at least n+ 1, and n2 + 1 is the minimum length to

2

guarantee the existence of an monotonic subsequence of length n+ 1.

In other words, some sequences of n2 distinct real number do not have a monotonic

subsequence of length n+ 1. For example, the sequence

7, 8, 9, 4, 5, 6, 1, 2, 3

has many monotonic subsequence of length 3 but does not have any monotonic sub-

sequence of length 4. The reason behind this is that in order for a sequence to have

a monotonic subsequence of length 3 + 1 = 4, the sequence should contains at least

32+1 = 10 elements. However, the sequence we listed above contains only 9 elements.

Note that this theorem does not specify whether the subsequence is monotonically

increasing or monotonically decreasing. The reason behind this is that both increasing

subsequence or decreasing subsequence represent local orderliness among the global

chaos. Moreover, if we reverse a sequence, then all the increasing subsequences become

decreasing, and all the decreasing subsequences become increasing. It is not necessary

to differentiate between the two. In fact, we will observe that this uniform notion of

“monotone” provides a smooth transition into the study of set partitions.

3

2 Set Partitions

2.1 Definitions

Mathematicians and theoretical computer scientists have been studying sequences of

distinct numbers for decades. Instead of considering sequences, we are more interested

in the partitions of a set of positive integers. We will establish a set partition related

problem similar to the classic subsequence problem described above. First of all,

we will define the corresponding terms of “sequence,” “subsequence,” “length,” and

“monotone” in the context of set partition.

• A partition of a set is comprised of one or more blocks, and each element of the

set falls into one of these blocks. In other word, blocks are pairwise disjoint

nonempty subsets of the set, and the union of these subsets equals the set itself.

We use “/” to separate blocks from each other. For example, π = 138/24/579/6

is a partition of the set {1, 2, 3, 4, 5, 6, 7, 8, 9}. By convention we list the elements

of each block in increasing order and arrange the blocks in increasing order of

their least elements.

• If we take nonempty subsets of one or more blocks, then we call the collection of

these subsets of blocks a subpartition of the original set partition. For instance,

both π1 = 18/4/57 and π2 = 24/6/9 are subpartitions of π = 138/24/579/6.

Notice that subpartition is the counterpart of “subsequence” in set partition.

Furthermore, the subsets of blocks of the original partition are now the blocks

of this subpartition.

• For both a partition and a subpartition, we call the sum of its blocks’ cardinal-

ities its weight. If the weight of partition πA is larger than that of πB, we say

that πA is “heavier” than πB. For example, π = 138/24/579/6 has weight 9.

π1 = 18/4/57 has weight 5 and π2 = 24/6/9 has weight 4. π1 is heavier than π2.

4

Weight is the corresponding concept of “length” in set partition; both weight

and length represent the “size” of the mathematical objects of interest.

• A link of a partition is a 3−subpartition of the form a1a2/b, where a1 < b < a2,

a1, a2 belong to the same block and b is in a different block. For the sake of

convenience we usually express link ac/b as abc. A partition or subpartition

is “13/2-free,” “link-free” or simply “free,” if it does not contain any links. In

other words, a partition/subpartition is free if and only if for any two numbers

a, b in a block, there is no element c in another block satisfying a < c < b.

For instance, π2 = 24/6/9 is free, but π3 = 18/4/57 is not free since it contains

links 148 and 158 and 178.

In addition, given a set partition π we call the collection of all links in π the linkset

L of π. Professor Gottlieb has come up with the following axioms that all linksets L

need to satisfy:

1. If abc ∈ L then

(a) for all d ∈ [n] we have adb /∈ L.

(b) for all d ∈ [n] we have bdc /∈ L.

(c) for all d ∈ [n] we have dac /∈ L.

(d) for all d ∈ [n] we have acd /∈ L.

2. If abc ∈ L and cde ∈ L then abe ∈ L and ade ∈ L

3. If abc ∈ L and for all e ∈ [n] we have aed /∈ L and dec /∈ l then adc ∈ L .

Now we have all the corresponding terms of the longest monotonic subsequence

problem to establish its counterpart in the context of set partitions. We will first

study the following computational problem.

5

The heaviest free subpartition problem is to find a subpartition of a

given set partition in which the subpartition contains no link and in which

the subpartition is as heavy as possible.

2.2 The Number of Set Partitions

It is beneficial to look at how the number of partitions grows as the weight increases.

We can easily compute and enumerate that there are 5 partitions of the set {1, 2, 3},

namely 1/2/3 and 12/3 and 1/23 and 13/2 and 123. It is also not so hard to count that

there are 15 partitions of {1, 2, 3, 4}. How about for even larger sets? Mathematicians

have been working on the number of partitions for decades. The total number of set

partitions of a given weight are commonly known as Bell number [4]. We shall denote

Bell numbers by $n. The first few cases are

n = 0 1 2 3 4 5 6 7 8 9 10 11 12

$n = 1 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597

The Bell numbers $n for n ≥ 0 must satisfy the recurrence relation

$n+1 = $n +

(
n

1

)
$n−1 +

(
n

2

)
$n−2 + . . . =

∑
k

(
n

k

)
$n−k

The reason behind this recursive formula is that every partition of {1, . . . , n+ 1}

is formed by choosing k elements of {1, . . . , n} to put in the block containing n + 1

and by partitioning the remaining elements in $n−k ways, for some k. Notice that

this sequence grows very rapidly, but not as fast as n!. Knuth has proved that

$n = Θ((n/ log n)n) [8].

6

3 Representations of A Set Partition

We introduce various ways to represent a set partition. Each of these representations

demonstrates some aspects of the combinatorial objects.

3.1 Restricted Growth Functions

One of the most common and convenient ways to represent a set partition inside a

computer is to encode it as a restricted growth function or restricted growth string, or

RGF for short [9]. A restricted growth function is a string a1a2 . . . an of nonnegative

integers in which we have

a1 = 1 and aj+1 ≤ 1 + max(a1, . . . , aj) for 1 ≤ j < n.

The main idea of this encoding is to set aj = ak if and only if j and k are in the

same block, and to choose the smallest available number for aj whenever j is smallest

in its block. In other words, what restricted growth function does is to record the

block index of each number in the partition. For instance, the restricted growth

function for π = 138/24/579/6 is 121234313. Since the number 1 appears in the first

block, we put 1 in the first position of the restricted growth function. The number

2 appears in the second block, so the second position is 2, and the rest of the digits

follow the same pattern.

A sequence s of N is called clumpy if it satisfies that if i < t < j and s(i) = s(j),

then s(i) = s(t) = s(j). We now show that

Theorem A partition π is free if and only if its RGF sπ is clumpy.

Proof: If π is free, then for all i, j such that i and j are in the same block, we know

that sπ(i) = sπ(j). Suppose sπ is not clumpy, then we know that there exists t such

that i < t < j, but sπ(i) 6= sπ(t). This also means that t is not in the same block

as i and j and i < t < j. Obviously itj is a link and π is not free. We have a

contradiction, then our assumption is false. Therefore sπ is clumpy.

7

On the other hand, if sπ is clumpy, then we know that for all i, t, j, if i < t < j and

sπ(i) = sπ(j), then sπ(i) = sπ(t) = sπ(j). Suppose π is not free, then we know that

there exists p, q, r such that p < q < r and p, r are in the same block, but q is not. Then

by the formation of a restricted growth function, we know that sπ(p) = sπ(r) 6= sπ(q),

which is contradictory to our claim that sπ is clumpy. Therefore our assumption is

false and π is free. �

George Hutchinson [6] has developed the following algorithm to generate the re-

stricted growth functions in lexicographic order.

Algorithm H (Restricted growth strings in lexicographic order). Given n ≥ 2, this

algorithm generates all partitions of {1, 2, . . . , n} by visiting all strings a1a2 . . . an that

satisfy the restricted growth condition in the definition listed above. We maintain an

auxiliary array b1b2 . . . bn, where bj+1 = 1+max(a1, . . . , aj); the value of bn is actually

kept in a separate variable, m, for efficiency.

H1. [Initialize.] Set a1 . . . an ← 0 . . . 0, b1 . . . bn ← 1 . . . 1, and m← 1.

H2. [Visit.] Visit the restricted growth function a1 . . . an, which represents a partition

into m+ [an = m] blocks. Then go to H4 if an = m.

H3. [Increase an.] Set an ← an + 1 and return to H2.

H4. [Find j.] Set j ← n− 1; then, while aj = bj, set j ← j − 1.

H5. [Increase aj] Terminate if j = 1. Otherwise set aj ← aj + 1.

H6. [Zero out aj+1 . . . an] Set m← bj + [aj = bj] and j ← j + 1. Then, while j < n,

set aj ← 0, bj ← m, and j ← j + 1. Finally set an ← 0 and go back to H2.

In Algorithm H, step H1, H2, . . ., H6 are performed 1, $n, $n−$n−1, $n−1, $n−1

$n−1 − 1 times respectively.

An obvious drawback for the restricted growth function to represent a set parti-

tion is that we will lose some information when taking the restricted growth function

of a subpartition. To be more specific, consider the partition 1/2345/6, whose RGF

8

representation is 122223. All of subpartition 1/2/6 and 1/3/6 and 1/4/6 and 1/5/6

have RGF representation 123. This will cause potential ambiguity. To fix this prob-

lem, when taking subpartition of a partition, instead of trying to compute the RGF

for the new subpartition, the only changes we do to the RGF are to change the value

of position i to be 0, if i is a number that is not in the subpartition. For instance,

now 1/2/6 will have 120003 as its representation, since we have deleted number 3, 4, 5

and we replace their positions with 0. Note that the representation of a subpartition

may not be a restricted growth function any more and this representation only has

meaning when we are considering a subpartition of a given partition. For example,

14/23 has RGF as 1221, however its subpartion 23/4 has representation 221, which

is not a RGF.

The heaviest free subpartition problem becomes the problem to find the longest

clumpy subsequence of a restricted growth function that represents a set partition.

3.2 The Interval Scheduling Problem

A set partition can also be represented as a variation of the scheduling problem. The

basic idea to use intervals on the same level to denote numbers in the same block,

and numbers in two different block will appear as intervals on different levels in the

graph.

A formal definition of the interval scheduling problem is: We have a set of requests

{1, 2, . . . , n}; the ith request corresponds to an interval of time starting at s(i) and

finishing at f(i). We say that a subset of the requests is compatible if no two of its

members overlap in time, and our goal is to accept as large a compatible subsets as

possible. A compatible set of maximum size will be called optimal [7].

Since we usually place these intervals into different height when illustrating them

in the 2-D plane. For each 2-D plane that represent a set partition, we place the

intervals representing two numbers in the same level if and only if these two numbers

9

Figure 1: The interval representation of the partition 138/24/579/6.

are in the same block. Figure 1 is an illustration of π = 138/24/579/6.

Now, the goal of the problem is to find a special optimal compatible set of intervals.

It is a “path” from left to right such that once we leave a level, we will never re-enter

the same level.

3.3 The Weighted Scheduling Problem

Another variation of the interval scheduling problem can also provide some insights in

to the structure of the heaviest free subpartition problem. The weighted scheduling

model is similar to the generic interval scheduling problem discussed above. The

main difference is that the each intervals in the 2-D plane now has a weight. Most

importantly, the length of each interval demonstrated in the 2-D plane is not related

to its weight. Figure 2 is an example in which the weight vk of an interval k is

completely irrelevant from its length.

A possible representation of the weighted scheduling problem is to use each interval

to represent a combination of numbers from a block and the weight of this interval

is the sum of the number selected. And when we have all these intervals, we need to

find a way to place them in the 2-D plane such that if two combinations of numbers

10

cannot coexist (because they will cause a link to appear) then the two intervals

that represents them will overlap. After this process, the heaviest free subpartition

problem is reduced into the weighted scheduling problem in which the goal is to find

a sequence of non-overlapping intervals such that the sum of the weight is maximized.

Figure 2: An example of the weighted scheduling problem in which the weight of an
interval is not related to its length.

This representation is tempting because it carries the concept of the weight natu-

rally. Additionally, it is elegant even to think of the idea that we are using the relative

positions in the 2-D plane to denote the links. A O(n log n) algorithm using dynamic

programming has been invented to solve the weighted scheduling problem [7]. It is a

pity that we have not found a way to arrange the intervals described above. Such a

way of arrangement is expected to run in exponential-time even if it is found.

3.4 The Hypergraph Vertex Cover Problem

A k−uniform hypergraph H = (V,E) consists of set of vertices V and a collection

E of k−element subsets of V called hyperedges. A vertex cover of H is a subset

S ⊆ V such that every hyperedge in E intersects S, in other word, e ∩ S 6= ∅ for

each e ∈ E. The Ek-Vertex-Cover problem is the problem of finding a minimum size

vertex cover in a k-uniform hypergraph [2]. This problem is alternatively called the

11

minimum hitting set problem with sets of size k. Figure 1 illustrates an example of

the Ek-Vertex-Cover problem and a vertex cover of minimum size.

Figure 3: This is a hypergraph and the set of vertices marked with “X” is a minimum
vertex cover.

To convert the heaviest free subpartition problem using this model, let V be the

set of numbers in the partition π and let E be the linkset of π, i.e. E contains all

the links of π. Since we define link as a triple of numbers in the partition, then we

know that in this case k = 3, and the new hypergraph H = (V,E) we just defined is

a 3-uniform hypergraph.

Now we finally have an elegant and simple way to transform our problem into a

widely studied one. However, the Ek-Vertex-Cover problem is a fundamental NP-

hard optimization problem. Being an NP-hard problem means that this problem is

“at least as hard as the hardest problems in NP”. Although the properties we tracked

through studying the linkset will help us simplify the hypergraphs we are dealing

with, the problem is still hard. Since the Ek-Vertex-Cover problem on a generic

hypergraph is NP-hard, theoretical computer scientists’ efforts on this problem are

mainly applying approximation algorithms. Dealing with approximation algorithms

12

is beyond the scope of this project.

13

4 Algorithms

4.1 The Dynamic Programming Approach

The application of dynamic programming requires the existence of a clear relation

between the problem’s solution and its subproblems’ solution. In other words, the

dynamic programming approach might apply if the problem exhibits optimal sub-

structure in which an optimal solution to the problem contains within it optimal

solutions to subproblems [1]. A classic example is the algorithm to find the longest

increasing subsequence. By applying dynamic programming, the longest increasing

subsequence problem can be solved in O(n log n) time [5]. However, we are unable to

find an optimal substructure in the heaviest free subpartition problem. Let π be a set

partition of weight n and π1 be its subpartition of weight n−1. From our observation,

there is no certain relation between the heaviest free subpartition of π and that of π1.

Since we faced seemingly unresolvable obstacles in the direction of dynamic pro-

gramming, we turned out emphasis on another widely used technique, the greedy

algorithm.

4.2 The Greedy Approach

We have come up with an algorithm to find a free subpartition in a given partition

using the greedy algorithm design paradigm. By calling an algorithm “greedy” we

mean that at each step of the decision process, we always pick the locally optimal

choice with the hope of finding a global optimum. The designers of the greedy algo-

rithms always need a heuristic to make the choice. This heuristic is an estimation of

the structure we are exploring and evaluations of the possible choices.

14

4.2.1 The Naive Greedy Approach

For the heaviest free subpartition problem, the heuristic we choose is the appearances

of each number in the linkset L. More specifically, we wil do the following:

1. Create an array f [] of size n and initialize all f [1], . . . , f [n] to be 0.

2. Then we visit all the triples in the linkset L, every time we encounter number

i, we increase f [i] by 1. When we have finished this process for all the links,

the value of f [i] is the number of i’s appearances in the linkset L.

3. One natural way to modify a partition so that it is free is to break the links;

when there is no link left, the partition is free. At each step, it is natural

to delete the number that appears most frequently in the linkset so that the

amount of links we break will be maximized at this step. So at each step we

choose the number to delete to be the i such that f [i] = max{f [1], . . . , f [n]}.

If there are more than one such i, we always choose the least one, which is why

we call this the “naive” approach.

4. Then we remove all the links that contains i and update the array f [].

5. We repeat step 3-4 until there is no links left.

The partition we are left with now is a free subpartition and we hope by the greedy

assumption that this is a heaviest free subpartition. We call the algorithm described

above as the naive greedy algorithm.

For example, Consider the partition 15/238/46/710/9 whose RGF is 1223134254.

• Now the content of f array is

n = 1 2 3 4 5 6 7 8 9 10

f [n] = 3 5 5 4 6 3 4 9 1 2

15

• We delete 8.

• Now the content of f array is

n = 1 2 3 4 5 6 7 8 9 10

f [n] = 3 1 1 2 4 1 1 0 1 1

• We delete 5.

• Now the content of f array is

n = 1 2 3 4 5 6 7 8 9 10

f [n] = 0 0 0 0 0 0 1 0 1 1

• We delete 7

• Now the content of f array is

n = 1 2 3 4 5 6 7 8 9 10

f [n] = 0 0 0 0 0 0 0 0 0 0

• Done! The resulting subpartition is 1/23/46/9/10 and this is a heaviest free

subpartition.

In fact it is not so hard to find partitions such that this naive greedy approach

fails.

For instance, consider the partition 159/23/46810/7 whose RGF is 1223134313.

• Now the content of f array is

n = 1 2 3 4 5 6 7 8 9 10

f [n] = 9 2 2 8 9 6 6 6 12 6

• We delete 9.

• Now the content of f array is

n = 1 2 3 4 5 6 7 8 9 10

f [n] = 3 1 1 6 6 3 4 3 0 3

16

• We delete 4.

• Now the content of f array is

n = 1 2 3 4 5 6 7 8 9 10

f [n] = 2 1 1 0 2 2 2 1 0 1

• We delete 1

• Now the content of f array is

n = 1 2 3 4 5 6 7 8 9 10

f [n] = 0 0 0 0 0 2 2 1 0 1

• We delete 6

• Done! The free subpartition we get from the greedy algorithm is 5/23/810/7.

• However, there is an even heavier free subpartition 1/23/46810

Suppose the greedy algorithm returns us a free subpartition of weight n − t, in

other word, the greedy process deletes t elements from the original partition. They

method we used to check if the result of the greedy algorithm is the heaviest free

subpartition, is by trying to delete all the (t − 1)−combinations of numbers in [n]

from the original partition and test if any of the resulting subpartition is free. If

there is one such subpartition that is free, then result of the greedy algorithm is not

optimal, and the greedy algorithm fails. The following algorithm [8] to generate all

the combination is used when testing the quality of result of the greedy approach.

Algorithm L (Lexicographic combinations).

This algorithm generates all t−combinations ct . . . c2c1 of the n numbers {0, 1, . . . , n−

1}, given n ≥ t ≥ 0. Additional variables ct+1 and ct+2 are used as sentinels.

L1. [Initialize.] Set cj ← j − 1 for 1 ≤ j ≤ t; also set ct+1 ← j − 1 and ct+2 ← 0.

L2. [Visit.] Visit the combination ct . . . c2c1

17

L3. [Find j.] Set j ← 1. Then, while cj + 1 = cj+1, set cj ← j − 1 and j ← j + 1;

eventually the condition cj + 1 6= cj+1 will occur.

L4. [Done?] Terminate the algorithm if j > t.

L5. [Increase cj.] Set cj ← cj + 1 and return to L2.

Since we mentioned that an the Ek-Vertex-Cover Problem, which can be viewed

as a generalization of the heaviest free subpartition problem, is NP-hard, a natural

question to ask is “Is the free subpartition problem in NP?” A problem is in NP if

and only if given a solution, we can verify whether this solution is valid or not in

polynomial-time. Although being NP does not tell us sufficient information about

the algorithm to find such a solution, failure to be NP will definitely demonstrate the

complexity of the problem. To determine whether there is a polynomial-time verifier

for the heaviest free subpartition problem, it is necessary to have a close look at the

growth rate of

(
n

k

)
.

For k = 1,

(
n

1

)
= n ∈ Θ(n)

For k = 2,

(
n

2

)
=
n(n+ 1)

2
∈ Θ(n2)

For k = 3,

(
n

3

)
=
n(n− 1)(n− 2)

6
∈ Θ(n3)

Because of the symmetry of binomial coefficient, the largest k we need to consider

is

For k = n
2

18

(
n
n
2

)
=

n!

((n/2)!)2

By applying the Stirling Formula

n! ∼
√

2πn(
(n)

e
)n

we then get

(
n

n/2

)
≈

√
2πn((n)

e
)n

[
√

2πn/2((n)
2e

)n/2]2
=

2√
2πn

2n ∈ Θ(2nn−0.5)

which tells us
(n
k

)
grows exponentially near k =

n

2
. As a conclusion, we cannot

even test the correctness of the greedy algorithm’s result efficiently when the amount

of numbers we delete during the greedy algorithm increases. This implementation

basically becomes useless when we are testing partition of a larger weight, in which

both n growth and the number we delete from the partition is possibly close to n
2
.

If applying Algorithm L and our current method to examine L’s result, the heaviest

free subpartition problem becomes NP-Hard as the weight of the partition grows.

4.2.2 A “Complete” Greedy Approach

Now since this problem is hard based on our current techniques and the computation

is expensive even for the naive approach, I am less concerned about efficiency. Instead,

my primary computational question becomes

for any partition, is there a sequence of greedy choices that will lead to

a heaviest free subpartition?

To answer this question, I modified the greedy algorithm described above. When

facing a tie in the value of f [i], instead of choosing the least number i, I try all such

19

i’s. If we follow this pattern, we are actually exploring a tree, in which each child of

a node represents a locally optimal choice. We choose Depth First Search to provide

us a way to traverse this “greedy” tree. We call this complete search of the greedy

path tree the complete greedy algorithm.

Below is the pseudo-code of a depth first search using stack.

Depth-First-Search(G, root)

1 S ← A Stack

2 S.push(root)

3 while S is not empty

4 do v ← S.pop()

5 mark node v as visited

6 for each node w that is directed from v:

7 if w is not visited:

8 then S.push(w)

The result of performing the “complete” greedy algorithm shows that

1. For some partitions although the naive greedy algorithm fails, there is a path

in the greedy path tree that will lead to a heaviest free subpartition.

2. For some partition, no greedy path will lead to a heaviest free subpartition.

For example, the free subpartitions that the complete greedy algorithm generates

for partition 12468/3/59/710 are: 124/59/10 and 12/3/59/10 and 12/3/5/710

While the only heaviest free subpartitions of this partition is: 12468/9/10

Note that all the free subpartitions that formed by the greedy algorithm delete

the number 6 and 8, while the real heaviest free subpartition does not delete neither

of them. Here the locally optimal step do not accumulate to a global optimum. Thus,

we can conclude that the failure of the greedy algorithm shows us that the array f []

is not sufficient to represent the actual quality of each choice.

20

4.2.3 Evaluation of Performance

Nevertheless, both the greedy and the complete greedy algorithm can provide a good

approximate of the heaviest free subpartition. By implementing both algorithms,

running them on all the set partition of weight 6, 7, 8, 9, 10, 11 and computing the

percentage of the partitions on which the greedy algorithm works in all the partitions

that are not free already, we found that the improvement of the complete greedy

algorithm compared to the naive approach is not that significant, as we can see in

the table below.

For the naive greedy algorithm

weight 6 7 8 9 10 11

% of success 100% 99.51% 98.70% 97.62% 96.42% 95.08%

For the complete greedy algorithm

weight 6 7 8 9 10 11

% of success 100% 100% 99.80% 99.30% 98.64% 97.89%

21

5 A Ramsey Theoretic Theorem

The ultimate goal of this project is to answer the following question:

How large must the minimum value of n be in order to guarantee that every

partition of the set {1 . . . n} has a free subpartition of weight k?

We call this minimum value of n f(k), since it is clearly a function of k. First

of all, does such f(k) even exist? The answer is positive. Consider a set of car-

dinality (k − 1)2 + 1. When using the convention of set partition described above,

each partition of the set could be expressed as a sequence of length (k − 1)2 + 1.

For example, 157/246/389 has sequence representation (1, 5, 7, 2, 4, 6, 3, 8, 9). By the

Erdös-Szekeres Theorem, there will be a monotonic subsequence of length k. These

k numbers and the “/” between them in the original sequence form a sequence rep-

resentation of a free subpartition of weight k. This application of the Erdös-Szekeres

Theorem shows that all the partitions of |(k− 1)2 + 1|-set have a free subpartition of

weight k. This implies the existence of f(k) and f(k) ≤ (k − 1)2 + 1.

Professor Gottlieb conjectures that f(k) = b (k+1)2

4
c. If we complete the proof of

this conjecture, it will be a significant leap from the loose upper bound (k − 1)2 + 1.

Like the study of the longest monotonic subsequence, this fundamental problem of

my project is a concrete example of Ramsey Theory.

Professor Gottlieb has also shown that there exist partitions of weight
⌊
(n+1)2

4

⌋
−1

that do not have a free subpartition of weight n. The remaining portion to prove this

conjecture is to show that

A partition of weight

⌊
(n+ 1)2

4

⌋
must have a free subpartition of weight n.

I have proposed a proof of this direction which turned out to be false. When

facing the obstacles in directly proving the result, I also tried to verify the existence

of free n-subpartition in a f(n)-partition. Both Professor Gottlieb and I have been

22

able to verify the correctness when n ≤ 6, that is all partitions of weight 12 has a

free subpartition of weight 6. The method I used to check the existence of such free

subpartition is by applying the naive greedy algorithm as an approximation first and

then check the heavier free subpartition to see if its weight is greater than or equal

to n. So far, to test the case n = 6, my program takes around 15 minutes. However,

since $16/$12 ≥ 2400, I haven’t been able to verify the case n = 7 yet.

23

6 Conclusion

This problem is, in fact, much harder than we previously expected. For finding the

heaviest free subpartition, there is no obvious way to apply the dynamic programming

approach, while the greedy algorithms can only serve as an approximation for small

weight. We also faced difficulties in the verification of the greedy algorithm due to

our current lack of computing power.

Although this project yields no essential results at this point, I have spent a

considerable amount of time and energy on coding, reading articles and considering

many possible directions. The knowledge I gained and the skills I have sharpened

cannot be shown completely through this report. I will keep working on this problem

when I graduate, because it shows me more complexity and attractions as I explore.

Special thanks to Professor Eric Gottlieb for his yearlong support and guidance.

24

References

[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduc-

tion to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[2] Dinur, I., Guruswami, V., Khot, S., and Regev, O. A new multilayered

pcp and the hardness of hypergraph vertex cover. In Proceedings of the thirty-fifth

annual ACM symposium on Theory of computing (New York, NY, USA, 2003),

STOC ’03, ACM, pp. 595–601.

[3] Erdös, P., and Szekeres, G. A combinatorial problem in geometry. In Classic

Papers in Combinatorics, I. Gessel and G.-C. Rota, Eds., Modern Birkhäuser

Classics. Birkhuser Boston, 1987, pp. 49–56.

[4] Erickson, M. J. Introduction to Combinatorics. Wiley-Interscience, 1996.

[5] Hunt, J. W., and Szymanski, T. G. A fast algorithm for computing longest

common subsequences. Commun. ACM 20, 5 (May 1977), 350–353.

[6] Hutchinson, G. Partioning algorithms for finite sets. Commun. ACM 6, 10

(Oct. 1963), 613–614.

[7] Kleinberg, J., and Tardos, E. Algorithm Design. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2005.

[8] Knuth, D. E. The Art of Computer Programming, Volume 4, Fascicle 3: Gen-

erating All Combinations and Partitions. Addison-Wesley Professional, 2005.

[9] Stanton, D., and White, D. Constructive Combinatorics. Undergraduate

Texts in Mathematics. Springer-Verlag, 1986.

	Permission Page
	honors_thesis

