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Abstract

Fréchet Differentiability in the Optimal Control of Parabolic Free
Boundary Problems

- An Alternative Approach

Jessica Pillow

We consider an optimal control of the Stefan type free boundary problem for the following general

second order linear parabolic PDE:
(0’<$’ t)uﬂc)ﬂf + b(l‘, t)uw + C(J?, t)u — Ut = f(CC, t)

where u(x,t) is the temperature function. The density of heat sources f, unknown free boundary s,
and boundary heat flux g are components of the control vector, and the cost functional consists of
the Ls-declination of the trace of the temperature at the final moment, the temperature at the free
boundary, and the final position of the free boundary from available measurements. We follow a new
variational formulation developed in U. G. Abdulla, Inverse Problems and Imaging, 7,2(2013),307-
340.

Fréchet differentiability of the optimal control problem has been proven. In this project, we
consider an alternative approach in proving Fréchet differentiability. The idea of the alternative
approach is the following: changing the space variable as y = =/s(t) and keeping the time variable
as it is, one can transform the problem to a new optimal control problem of the system described
by the parabolic PDE in a fixed region, with the control parameters distributed in the coefficients
of the PDE. In this paper, we derive the expression for the Fréchet differential of the transformed

cost functional.



0 Definition of Fréchet Differentiability

Let B be a Banach space, u € B, and the functional J be defined in some neighborhood
Oc(u)y={veV:|v—ul| <e}
about the point u. We say J is differentiable at u if there exists an element J'(u) € B* such that
AJ(u)=J(u+h)— J(u) = (J'(u),h)g- + o(h,u)

where ||h|| < €, and

o(h,u)
2]

— 0 as ||| — 0.

The linear functional d.J(u) := (J'(u), h) g~ is called the Fréchet differential at u.

1 Introduction

Consider the general one-phase Stefan problem:

(a(z,t)ug)y + b(@, )uy + c(z,t)u — up = f(x,t), in Q )
u(@,0) = 6(x), 0 <z < 5(0) = s @)
a(0,t)uy(0,t) =g(t), 0<t<T (3)

als(t), tyua(s(t), ) + 4(s(8), )8 (8) = x(s(0),1), 0 <t < T (4)
u(s(t),t) = p(t), 0<t < T (5)

where a,b, ¢, f, ¢, 9,7, X, p are given,

Q={(z,t):0<z<s(t), 0<t<T} (6)

Assume that f(z,t) and ¢(t) are not known, where f(z,¢) is the density of the heat source and g(t) is
the heat flux at x = 0, the left boundary of our domain. Now, in order to find f(z,t) and ¢(¢) along
with u(z,t) and s(t), we must have additional information. Assume that we are able to measure the

temperature on our domain at the final moment 7', and find that the measurement can be given by some



1.1 ISP Background 2

function w(x). Therefore, we have the additional condition

u(z, T) =w(z), 0 <z <s(T) = s,. )

Under these conditions, we are required to solve an inverse Stefan problem (ISP): find a tuple

{ulz,1),s(t),9(t), f (2, 1)}

that satisfy conditions (1)-(7).

11 ISP Background

The inverse Stefan problem is not well posed in the sense of Hadamard, meaning that the solution may
not exist; if it does exist, the solution may not be unique; and the solution generally does not exhibit
continuous dependence on the data. In particular, there is no continuous dependence on pu(t), the
measurement for the phase transition temperature.

Methods available to solve ISP include a variational formulation, Fréchet differentiability, and iterative
gradient methods. In existing variational formulations, a cost functional is to be minimized over a control
set, where the components of the control vectors consist of functions that could serve as the missing data.
So in our example above, the control vectors in the control set would contain functions of the form f(z,t)
(representing our missing measurement for the density of the heat sources in 2) and g(¢) (representing our
missing measurement for the heat flux along the fixed boundary). However, two main issues arise when

using this formulation:

¢ Solutions generally will not have continuous linear dependence on the data for the phase transition

temperature. Small perturbations in the measurement could yield very different results.

* Solving ISP using this formulation is computationally expensive. When using the iterative gradient
technique to minimize the cost functional, at each iteration one must solve a Stefan problem (which

is difficult and computationally expensive in itself).

However, a new formulation was proposed in [1] and [2] that addresses both of these issues.



2 New Formulation and Previous Work

For this new formulation, the goal is to minimize the cost functional

T

s(T)
JI(v) = 5OA [ul, T;v) = w(z)|* de + by / [uls(t),t;0) = p(t)]” dt + B |s(T) = s.|”

0

on the control set

Ve = {v = (f,9.5) € Wy /(D) x WL0,T) x W2[0,T); 5(0) = so, §'(0) =0, 0< 5 < s(t) </

9(0) = a(0,0)¢/(0), max (1 1.2y Iollwz 0,70 Islwzpory) < R

where 0,R € R, D = {(z,t) : 0 < 2 < ¥, 0 <t < T}, and u(z,t;v) is a solution to the Neumann
problem (1)-(4).

Notice that the main difference between this formulation and the existing formulation is that the free
boundary s(t) is treated as missing data, and is included as a component of the control vectors in the
control set V. By doing this, we solve the two main issues addressed previously. We see from the second
term defined in the cost functional that we are looking to minimize the error between our solution for
u(x,t) evaluated at our solution for s(t) and our phase transition temperature measurement x(t). So, we
obtain solutions to the ISP that are more stable with respect to u(t). As for the issue of computational
costs, this new formulation will also greatly reduce the cost and run time. By including s(t¢) as a component
of the control vector, when we implement the iterative gradient technique to minimize the cost functional,
at each step we are no longer solving a Stefan problem. Instead, we are solving a Neumann problem, which
is much easier.

It has been shown that the Fréchet differential of 7 is the following:

// OAf dz dt — /thAg

+ / o (5(8),8) — 1 (s(8), ' (B)] 0(s(8), ) As(t) dt
T

- / A(s(0), b(s(0), D) AS' (1) di—
T

- / [a(5(8), )1tz ((8), ) + aa((8), B (s(8), D] 0(s(8), ) As(t) dit+
T

+ / 26 (u(s(t), 1) — u())ua (s(8), A1) dt

+ (Bolu(s(T), T) = w(s(T)* +282(s(T) — 5.)) As(T)



However, one of the main issues in developing a program to minimize J is that at each iteration,

our free boundary function s(t) is incremented, thereby changing our region 2 that we must solve our

Neumann and adjoint PDE’s over. By implementing a simple change of variables, we can transform the

optimal control problem so that we would always be working in a fixed region.

3 Formulation of the Main Result

3.1 Transformed Optimal Control Problem

Let y = x/s(t) and ¢ = t. The region () is now transformed to the cylindrical region @)1, where
Qr ={(y,1) : 0<y<1; 0<t<T}
Now, we want to minimize the cost functional
' 2 T 2 2
= ﬁo/ uy, Tsv0) —w(s(T)y)|” dy + b / u(1,t;0) — p()|” dt + Ba |s(T) — s
0 0

on the control set

Vg = {v = (f,g,8) € Wa*(Qr) x Wa[0,T] x W2[0,T); s(0) = s0, s'(0) =0, 0 <5 < s(t) <

9(0) = a(0,0)¢/(0) s max (1l 1172, - I9lhwy oy - Ishwziom)) < B}

where 0,4, R € R, and u(y, t;v) is a solution to the Neumann problem.

(auy)y b+ yS .
wi (o= rmar
a(0,t)u, (0,t) = g(t)s(t), 0 <t <T

a(1, )y (1,8) = [x(1,t) — y(1,8)s'(£)]s(t), 0 <t < T

(8)



4 Motivating Heuristic Argument

We apply the heuristic argument of Lagrange multipliers, as described in [3]. We build the Lagrange

functional:

L(f.g,5,u,1) = //[ ” (H;é:)/(t))umtcu f]l/)dydt

For ease of notation, define

u(y, t) = u(y, t;v + 6v)
du(y,t) =u(y,t) — u(y,t)
5(t) = s(t) + ds(t)

3(t) = s(t) + 08s(t), 0 € (0,1)

fly,t) = f(y,t) +6f(y,t)

We wish to find the first variation of £, denoted L. We calculate the incremented Lagrange functional:

AL = T (v + 6v) +/T/1 {Ezyy)g + <b+;$/(t))uy+cu—ut —f} b dy dt

( A / [ ZZg 5+ (b +Sz(/:)’(t)> Uy + cu — up — f] wdydt> (14)

AT+ AT

where

AT

//[uti (P ) o en =7 wavar

(5(t)
[EZZ& <b+sz(/:)())uy+cu—ut—f}¢dydt (15)




We first consider AJ:

AT =T+ dv) —JT(v)
(/1|u(y,T)w |2dy+/ [a(1,t) — p(t)|?dt + |s(T )+55(T)5*|2>
(/ 1) oDy + [ Jat1o) - <>2dt+|s<T>—s*2>
= [ 200 T) st Ty~ [ 2l T) = T D)
[ 2 7) — T SDAT) ! GTY)35(T] dy
[ o0t )+ (T35~ wGTIT) — (T35 ()

T 1
+/ 2(u(1,t) — p(t))ou(l,t) dt +/ |6u(1,t)|? dt + 2(s(T) — s*)ds(T) + [6s(T)|*>  (16)
0 0

Therefore, the first variation of 7 is

57 = / T)y))ouly, T) dy — / 2uly, T) — w(s(T)y))w' (s(T)y)os(T) dy
+/O 2(u(1,t) — p(t))du(l, ) dt + 2(s(T) — s*)s(T) 17)

Now we focus our attention on AI. We have

AI:/OT/ (SEL; +(b+sz(/:)()>uy+cu—ut—f]wdydt
_/T/ [E 133 (b+8y8 ))uy+cu—ut—f]¢dydt
/ / (5( oy | b+;(/;)()5y—&-céu—éut—éf]wdydt

y)% :l:fyg <b+szg;’(t)>uy_<W) uy:|’(/1dydt
/ / [ s b+8ys)<>5uy+asu5ut5f]wdydt

+/o / s (M) v + Yo 0| sy

+ri+ret+rs+rg+rs+re, (18)




where

A

m:/OT/Ol :W}wdydt

[ G s (e o [ wana
ry = /OT /01 - (b?;z‘;gt) 5uy53(t)} o dy dt

rs = /OT /01 :g(l?;és’(t) - Z(Igés'(t)} W dy dt

re /OT/01 :zﬁ?)yés'(t)} b dy dt

Applying integration by parts,

- auy b+ys'(t) YUy <
AT = / / [ ( 5(0)? )uyés + S(t)és (t)} P dydt
/ T 1
/ / { ‘“l’y _ ) y+(y) )ys()+c¢+¢t] Sudydt — / / b6 f dy dt
0
apdu, [v=1 ahydu |¥=0 () + yops'(t))ou |v=t ! t=0
+/o (5(0)2 ly=o d”/o C0)E y:ld”/o g [ v

+ri sty (19)

y=0

From (11) - (13), we get the following conditions on dw in our region Qr:

a(0,t)6uy(0,t) = s(t)dg(t) + g(t)ds(t) + dg(t)ds(t)
a(1,t)0uy(1,t) = [x(1,t) — v(1,t)s'()]ds(t) — v(1,¢)s(t)ds’(t) — v(1,¢)ds(t)ds (¢)
du(y,0) =0



Applying these conditions to (19), we now have

AIf/ / [ "“y balt) _ <b£;(y75§;gt))uy68(t)+%és'(t)}1/1dydt

/ / [‘wy);’ (b9)y S%’;/’)ys/(t>+cw+¢t} 5udydt/T/1w5fdydt
+/0 (x — 7(2(&))))21/155( )‘y:l gt — /0 71#58 / 1/159 y d
O NS )
_/o V(y, T)ou(y, T)dy +r1+ 712 + 73+ 74+ 75+ 76 + 77 + 78
where
ypds(t)ds'(t)
”:‘A GOPE ™
A 0 11)55]5((?);( )’?FO “
Therefore,
6 = /OT /01 [ auy (b S(Qf) )uyés + Z(lgés’(t)] W dy dt
+/O /O [Ea??;; —( ’"’+S%))ysl()+cw+wt} 6udydt—/ /w(Sfdydt
T s s s(
+/0 (x — 7(8((25))))1#5 ()‘y_ldt/o w5 / wég y a
T g(t)yds Tayuy“ S)Uyl
- ’ (tsq(i()s)y) y=0 dt+/o («jtfp y=1 dt+/o (bw—i_izé)( . y=0 at

Y(y, T)ou(y, T) dy



Now, combining (17) and (21), we have the first variation of the Lagrange functional L is the following:

L=06T + 01
= /0 2(u(y, T) — w(s(T)y))duly, T) dy —/0 2(u(y, T) — w(s(T)y))w'(s(T)y)ds(T) dy

T
+/0 2(u(1,t) — pu(t))du(l, t) dt + 2(s(T) — s7)ds(T)

Tt —2(auy),6s(t)  (b+ys'(t) s Yuy s
“f A[ (5(0))? <<am2)y5@+s@5“ﬂ¢@“
T [aty)y  b)y + @)ys' @) wandi— [
+/0 /O [(s(t))2 S(0) + cp + Y | Sudydt / /wéfdydt
T(x - vs())wésm‘ B / wés / wag
+ dt
(s(1))2 y=1 yo
_:;mew%aw ﬁ+:/Tm%£Lv0ﬁ+:/ ww+yws<»&1ylﬁ
o )2 ly=o" Sy (s(6)%ly=1 0 s(t) y=0

- /0 by, T)bu(y, T) dy

Collecting like terms,

= /O 2(uly, T) —w(s(T)y)) — ¢(y, T)] duly, T) dy + 2(s(T) — 57)ds(T)

—A2wmn—wwﬂmmwGM%@my

_ oLy (,) (b, HY(A,1) + (L, 1)s (1)) du
s(1))? s(t)

(
/01 [2(auy)y55(t) _ (b (t (@g’)g)) uyB5(t) + %55’@)} vy dt
[(mpy;g (b)y +

] Su(l,t) dt

, T 1
S?)'L/))ys (t) + e + Py 5udydt—/ / Yo f dy dt

78’(t))¢58(t)‘ di — / W5s ar _/ wég
y=1 0

yO

T a)you
y=0 di+ /0 (s(t))? ‘y:O dt = /0 s(t) ‘y 0 dt (22)




As du is arbitrary, when the Lagrange function (22) is minimized we obtain the adjoint problem:

() (B0)y + s |
(s(0))? S(0) tep 4 =0, inQr
100 (10) _ (K000 g
a(0,0),(0,1) (b0, 0)0(0,1)
()2 s o ostst

Yy, T) =2(u(y, T) —w(s(T)y)), 0<y <1

We expect that the remaining terms in (22) will appear in the gradient of 7.

5 Finding the Fréchet Differential of 7

Once again, for ease of notation, let

uly,t) = u(y, t;v + Av)
Au(y,t) =u(y,t) — u(y,t)
5(t) = s(t) + As(t)
5(t) = s(t) + 0As(t), 0 € (0,1)

?(ya t) = f(yv t) + Af(% t)

From (10) - (13), we get the following conditions on Awu in our region Q)7:

(?A(q)‘ily +b_:Z(J:)/(t)Auy—kcAu—Aut—Af%
L 2an), As(t) | (bus (), oy
~ TP *( (5(0)? ) vasll) = e )

a(0,t)Au,(0,t) = s(t)Ag(t) + g(t)As(t) + Ag(t)As(t)
a(1,t)Auy(1,t) = [x(1,t) — (1, t)s" ()] As(t) — (1, ¢)s(t)As'(t) — v(1,t) As(t)As'(¢)
Au(y,0) =0

10

(27)

(28)
(29)

(30)



11

Consider the increment of our cost functional 7:

AT =T+ Av) — T (v)

1
= (/ [u(y, T) —w \Zdw/ [a(1,t) — p(t)|? dt + |s(T )+A5(T)s*|2>
0

- ( ; lu(y, T) —w(S(T)y)IQdy+/O u(1,8) — (&) dt + |s(T) —5*I2>

1

- / 2u(y, T) — w(s(T)y))Auly, T) dy — / 2(u(y, T) — w(s(T)y))w' (s(T)y) As(T) dy

n /T 2(u(l,t) — p(t)) Au(l,t) dt + 2(s(T) — s*)As(T) + Ry + Rs + Ry + Ry (31)

where

i = [ 2. T) ~ wls(T) (5T 85(T) — ' GTI 85T dy

Ry — /0 1 |Au(y, T) + ' (s(T)y)As(T) — w'(3(T)y) As(T) — w'(s(T)y)As(T)[* dy
Rs = /01|Au(1,t)2dt

Ry = |As(T)[?

The goal is to express AJ as a main part that is linear with respect to Av = (Af, Ag, As), plus

terms that belong to o(Awv). So, we now make use of the following two equations:

/ / {awy (by), Sit)) ’(t)+cw+wt] Au=0 (32)
//[aAuy b+y8)()Auy—i—cAu—Aut—Af}l/,dydt:

/ / [ auy = (bééj)gt))“y“(“‘%AS'“W@%—%RZ- (39

1=5



where

mo= [ [P ey pava
N

mo= [ [ () st (M) mssta vy
mo= [0 [ () smasta v

e [ [ [

12

Notice that (32) and (33) are derived from the conditions on v (the solution to the adjoint problem)

and Au, respectively.

Now, applying integration by parts on (32), we have

[ Lo

(y)y
s(t)

s'(t)

+ ey + 1/Jt] Audydt

B alAuyp, b+ ys'(t)
_/0 /0 _ (s(t§)2y + ey Auyth + cAup — Augtp dy dit
T ayyAu =1 T (b + yos' (1)) Au p=0 LA t=T
+/O GO) lyeo +/O D) it dt—&-/o YAu|,_, dy (34)
Similarly, from (33) we get
auy)yAs(t b+ ys yu ‘=
/ / { )3 +( )uyAs t) — S(;;As’(t)—&—Af]wdydt ZR
1
:/ / {aAuyy b+ys()Auy+cAu Aut}qlzdydt
o Jo s(t)
-~ aAu ) bers( ) T aAu, 1 (v=1
_/ / y y 0 Auyth + cAuyp — Augyp dy dt—l—/o (s(t)J)Q o dt  (35)




13

Subtracting (34) from (35), we have

[ P (5w Syt e arf o= S
= [y [T OB gy [ ORI OIA  ]a
__ /OT 2(u(l,t) — p(t)Au(l, 1) dt + /OT (= st'gij’m(” 'yzl dt
i P A W o
- A 1 2(u(y, T) — w(s(T)y))Au(y, T) dy + Ri1 + Riz (36)
where
== [ b

Notice that the term fol 2(u(y, T) — w(s(T)y))Au(y,T) dy can also be found in (31). Making the

appropriate substitution, we have

AT = /OT /01 {—2("“?’)@/As(t) _ (b + ysl(t)) wyAs(t) + LA () Af} W dy dt

(s(1))? (s(£))? s(t)

- / 2(u(y, T) — w(s(T)y))w'(s(T)y) As(T) dy + 2(s(T) — s*)As(T)

0

T (x =78/ (1) pAs(t) [T yAs (1) [T yAg(t)
+ et 5 S
[T g)pAs() -~

Gt o

6 Conclusion

Now that the differential of the transformed cost functional has been found, the next stages of the project
involve the development of a computer program that will apply the projective gradient technique to
find the control vector v in our control set that will minimize 7. Once completed, we will perform a
comparative analysis on the two programs (the program that minimizes the original cost functional vs. the
one that minimizes the transformed cost functional). We expect that the program written to minimize the

transformed optimal control problem will be more efficient, as our domain remains fixed.
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