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Abstract

In combinatorics, graph theory and Ramsey theory are two rich subjects
of study. There are many directions and problems to pursue. The auto-
morphism groups of graphs provide a connection between graph theory and
group theory. In this project, we will study a Ramsey-theoretic aspect of
graph theory. The main question is: how many edges must a tree contain
in order to guarantee the presence of a k-star or an n-path? Another way
to think about this problem is: what is the maximum number of edges that
a tree with no k-star or n-path can contain? We will establish a general
formula for the number of edges using induction and classify the trees that
achieve this maximum. In addition, we will describe the automorphism
group of these saturated trees. The same questions will be studied for con-
nected graphs following a similar procedure. We will show that the number

of edges for connected graphs has a close relation with the one for trees.




1 Background

1.1 Graph Theory

We will start by reviewing the fundamentals of graph theory. A graph G is a set
of points, called vertices, V(G), and a set of lines joining some pairs of distinct

vertices, called edges, E(G).

 Some authors allow multiple edges joining the same pair of points, or edges that
start and end in the same vertex, i.e. loops. [1] We do not allow multiple edges or
loops in our graphs for this project.

Definition 1.1. A sequence of distinct edges ejeq...e is called a trail if the
endpoint of e; is the starting point of e;y1. In addition, a trail is called a closed
trail if the end point of ey is the starting point of e;. A cycle is a closed trail
that does not touch any vertex twice except ihe initial vertex, which must be the
ending vertex. If a trail does not touch any verter twice, then we call it a path.

The number of edges connected to a vertez is called the degree of the vertez. [1]
A path with n edges is denoted P,.

In figure la, eqsesesese; is a trail, egezeqes is a cycle, egesey is a path of length 3.

2 2

(a) connected graph (b) disconnected graph

Figure 1: Example graphs



Definition 1.2. If the graph G has the property that for any two vertices x and

Yy, one can find a path from x toy, then we say that G is a connected graph. [1]

In Figure 1, figure la is a connected graph. Remove eg from it, we have fig-
ure 1b, which is not a connected graph. There is no path from F to the other
vertices.

Definition 1.3. A connected graph G is a tree if G does not contain any cycles.
Theorem 1.1. The number of edges in a tree is one less than the number of

vertices.

While E(G), V(G) denote the set of edges, vertices of G, when no confusion will

arise, we also use this to denote the number of edges, vertices of G.

For the tree T in Figure 2, there are 15 vertices and 14 edges, so E(T) = V(T) —
1.

11 12 13 14 15

Figure 2: tree

Definition 1.4. A star is a tree in which no path length is greater than 2.

Theorem 1.2. In a star, only one vertex can have degree greater than 1.
We denote a star with k& edges by S.

In Figure 2, vertex 5 together with vertices 2, 11, 12, 13 and the four edges form

a 4-star, Sy. Vertex 3 together with vertices 1, 6, 7 and the three edges form a



3-star, Ss.
Definition 1.5. Vertices of trees that have degree one are called leaves. Vertices

that are not leaves are called internal nodes.

In Figure 2, vertices 6, 7, 8, 10, 11, 12, 13, 14, 15 are leaves, while vertices 1, 2, 3,
4, 5, 9 are internal nodes.
Theorem 1.3. (Handshake Lemma) [1] In a graph G without loops, the number

of vertices of odd degree is even.

This is easily seen by observing that > _. deg (v) = 2|E|.

VEV

In Figure 2, the sum of degree of the vertices is 28 = 2 * 14.

1.2 Group Theory

Definition 1.6. A group G is an ordered pair (S,*) consisting of a nonempty set

S and a binary operation x on S, subject to the following three laws: (2]
1. Forallz,y,z € S, xx (y*z) = (x xy) x z. (associativity)

2. S contains an element e with the property that, for allx € S, xxe = exx = x.

The element e is called the identity element of G.

3. For every x € S there exists an x=' € S with the property that x * x™' =

-1

xVxx =e. The element x~!

1s called the inverse of .
Definition 1.7. The symmetric group S, of order n! consists of the set of bijec-

tions from {1,...,n} to {1,...,n}.

The group operation * is composition of bijections. The elements of S,, are written
in cycle notation; see Ramsey Theory [3] for details.

Definition 1.8. An automorphism of a graph G is a bijection ¢ from V(G) to
itself in which preserves edge—vertex connectivity, such that (z,y) is an edge of G

if and only if (¢(x), p(y)) is in E(G).

For example, the automorphism group of graph G in Figure 3 has six permuta-
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(8]
&

Figure 3: S3

tions, Aut(G) = {(12), (13), (23), (123), (132),e}. However, (134) is not in the
automorphism group because (1,4) is an edge of G, but (7(2),7(4)) = (2,1) is not

an edge of G.

With the understanding of necessary graph theory and group theory knowledge,

we will present the proofs of the famous theorems mentioned in Chapter 1.



2 Proofs of some related theorems

We highlight the following theorems that have close relations to our project.

2.1 Erdoés-Szekeres Theorem, 1935 [2]

We will introduce what a sequence is and a version of the pigeonhole principle
before stating the theorem:

Definition 2.1. A finite sequence S = {ay,...,a,} of real numbers is a function
a:{l,....,n} = R, for some n € N, defined by a(k) = ap for all k € N,,. A
sequence {by,..., by} is a subsequence of {ay,...,a,} if there exists a one-to-one
function f: {1,...,m} — {1,...,n} for which f(i) < f(j) whenever i < j, and
b(i) = a(f(i)) for all i € N,,,. A sequence is monotonically increasing if a; < a;
for all i < j, monotonically decreasing if a; > a; for all i < j.

Theorem 2.1 (Pigeonhole Principle). If f : A — B is a function, and |A| =
\B| + 1, then there exists b € B with |f~1(b)| > 2. In other words, f(a,) = f(as)

for some distinct a;,ay € A.

Now, use the pigeonhole principle, we will present and prove the theorem.

Theorem 2.2 (Erdos-Szekeres Theorem, 1935 ). Let m,n € N, any sequence
S ={a1,...,amnt1} of mn + 1 real numbers contains a monotonically increasing
subsequence of m + 1 terms or a monotonically decreasing subsequence of n + 1

terms (or both), and mn + 1 is the smallest value with this property.

Proof. Assume that S does not contain a subsequence of either type. We define a
function f: Ny — Ny, X N, by setting f(t) = (x4, y:), where x; is the greatest
number of terms in a monotonically increasing subsequence of S beginning with
a;. By the pigeonhole principle, there exist j, &k € {1,...,mn + 1}, j < k, with
f(j) = f(k). It follows that if a; < ay, then x; > xy, while if a; > ay, then y; > yy.
Both inequalities contradict f(j) = f(k). Therefore, our original assumption is

false, and S does not contain a monotonically increasing subsequence of m + 1



terms or a monotonically decreasing subsequence of n + 1 terms.

The expression mn + 1 is best possible in the sense that there exists a sequence of
mn real numbers which contains neither a monotonically increasing subsequence
of m + 1 terms or a monotonically decreasing subsequence of n + 1 terms. We
form such a sequence by concatenating n sequences of m increasing terms in the
following manner. For each j € N, let S; = {aij,...,am;} be a monotonically
increasing sequence of m real numbers, with ay; > a; whenever j < k. The
sequence S = {au, ey Q] Q12 e A2y e e ey Ay - - - ,amn} contains no monotonic

subsequence of the desired length. |

2.2 Dilworth’s Lemma [2]

We need to introduce chain, antichain and another version of the pigeonhole prin-

ciple here:

A partial order < on X is a total order if every two elements of X are comparable.
If <is a partial order on X, and Y is a subset of X in which every two elements are
comparable, then Y is a chain. If no two distinct elements of Y are comparable,
then Y is an antichain.

Theorem 2.3. If f : A — B is a function, with A and B finite nonempty set,
then there exists b € B with |f~1(b)| > |A|/|B|.

Theorem 2.4 (Dilworth’s Lemma). In any partial order on a set X of mn + 1
elements, there exists a chain of length m + 1 or an antichain of size n + 1, and

mn + 1 is the smallest value with this property.

Proof. Suppose there is no chain of size m + 1. Then we may define a function
f X = {1,...,m} with f(z) equal to the greatest number of elements in a
chain with greatest element x. By the pigeonhole principle, some n + 1 elements
of X have the same image under f .‘ By the definition of f, these elements are

incomparable; that is, they form an antichain of size n + 1. B



2.3 Ramsey’s Theorem, 1930 [2]

We need to introduce a third version of the pigeonhole principle before introducing
Ramsey’s theorem:
Theorem 2.5. If f : A — B is a function from a finite nonempty set A to a b-set

B = {Bu,..., By}, then the following two statements hold:
If|[Al=a1+---+a,— b+ 1, then there exists B; with |f~1(B;)| > a;.

If|[Al=a1+---+ay+b—1, then there exists B; with |f~1(B;)| < a;.

Theorem 2.6 (Ramsey’s Theorem, 1930). Given a,b > 2, there exists a least
integer R(a,b) with the following property: Every green-red coloring of the edges of
the complete graph on R(a,b) vertices yields a green K, or a red K,. Furthermore,

R(a,b) < R(a—1,b) + R(a,b—1) for all a,b > 3.

Proof. We employ induction on a and b. The basis of the induction consists of the

statements R(a,2) = a and R(2,b) = b. These are trivial.

In the first assertion, if we two-color K, and any edge is red, then we obtain a
red Ky, while if no edge is red, then we obtain a green K,. Thus R(2,a) < a.
Equality follows from the fact that an all green colored K,_; contains neither a
green K, nor a red K,. The second assertion is proved similarly. Now, assuming

the existence of R(a — 1,b) and R(a,b— 1), we will show that R(a,b) exists.

Let G be the complete graph on R(a — 1,b) + R(a,b — 1) vertices, and let v be
an arbitrary vertex of G. By the pigeonhole principle, at least R(a — 1,b) green
edges or at least R(a,b— 1) red edges emanate from v. Without loss of generality,
suppose that v is joined by green edges to a complete subgraph on R(a — 1,b)
vertices. By definition of R(a — 1,b), this subgraph must contain a red K} or a
green K,_i1. In the latter case, the green K,_; and v, and all the edges between the
two, constitute a green K,. We have shown that G contains a green K, or a red

K. Therefore, R(a,b) exists and satisfies R(a,b) < R(a—1,b) + R(a,b—1). N



2.4 Van der Waerden’s Theorem [3]

Theorem 2.7 (Van der Waerden’s Theorem). For all positive integers k and r,
there exists an integer W(k,r) so that, if the set of integers {1,2,... W (k,r)}
1s partitioned into v classes, then at least one class contains a k-term arithmetic

Progression.

Proof. We define m + 1 l-equivalence classes of [0,1]™. For 0 < i < m the set of
(1,...,2y) € [0,1]™ in which [ appears in the i rightmost positions and nowhere
else forms an [-equivalence class. The [-equivalence classes are disjoint. They

partition a proper subset of [0,[]™; the remaining sequences are not used. [ |




3 Number of Edges in Trees

3.1 Discovering the Lower Bound

Our objective is to answer the following question: How many edges must a tree

contain in order to guarantee the presence of a k-star or an n-path?

In proving the Erdos-Szekeres Theorem, (i.e. that mn+ 1 is as small as possible),
it was necessary to give an example of length mn where there is no increasing
subsequence of length m + 1 or a decreasing subsequence of length n + 1. Then,
with the addition of another real number, one of the two subsequences always

exists.

Similarly, for our problem, we will start by looking for the maximum “mn”. As

with the Erdos-Szekeres Theorem, the answer for minimum will be “mn+1".

We approach the problem by looking for the maximum number of edges in a tree
with no k-star and no n-path. Our goal is to define a class of trees T}, with this
property. By “no k-star”, we mean each vertex is of degree at most k£ — 1. By “no
n-path”, we mean each path has length at most n—1. As we have two parameters,
we shall fix one of them, &, and increase the value of n. The maximum number of

edges a tree with no k-star, n-path can have is E(7} ).
We look for the pattern with small k,n value examples.

When k = 2, there can only be one edge, regardless of the value of n. Similarly,
when n = 2, the maximum path length is one, there can only be one edge, regard-
less of the value of k. Therefore, Ty, = T2 = Py, hence, E(T5,,) = E(Tx2) = 1. In

addition to these easy and obvious cases, we construct trees for k > 3,n > 3.

When k = 3, we allow Sy in trees. As we increase n, we can add one edge to

one of the two outermost vertices each step, as shown in Figure 4. Therefore,

T3, = P,_1, hence, E(T3,,) =n— 1.



Figure 4: Tree examples for k = 3

When n = 3, a tree without a 3-path is a star, as shown in Figure 5. Therefore,

Tk,g = Sk-—l, hence, E(Tk,g) =k—1.

N ZIN AN

(c) T3 ‘
|

Figure 5: Tree examples for n = 3

The above examples are straightforward. Now moving to more complicated trees,

we have the following examples when k > 3,n > 3:

- 3F

(a) Tuz (b) Ty.a c) Tup

Figure 6: kK =4, n is even



(a) Ty3 (b) Ty (€) Ty7

Figure 7: k =4, n is odd

A pattern can be seen here:

E(T,2) =1

E(Ty3) =142

E(Tys) =14+2+2
E(Tys)=1+2+2+2?
E(Tyg)=1+2+2+2%+2?
E(Ty)=1+2+2+2>+2°4+2°
E(Ty8) =1+2+2+22+22 428+ 28

E(T4,9)=1+2+2+22+22+23+23+24

For each step, to avoid the existence of a k-star while adding edges to an existing
leaf, we should add k — 2 edges to create k — 1 star. If we add k& — 2 edges to all

leaves, then the path length will increase by 2.
Now we recursively construct the family of {7k, }n>2 for fixed & > 3.

Let & > 3 be a fixed integer. We treat even and odd values of n > 2 sepa-

rately.

For the base case, we already showed that Ty o = P, and let Ty 3 = Sj_;.
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Using the recursion relation, we add k& — 2 pendant edges to the leaves of T}, to

obtain T ,42.

To find the general expression for E(7},), we need to summarize the recursion

relation here, with the help of T5,, in Figure 8.

1
k-2
I

I
' ®
I

L LT I e S——-

k-2
k-2

? T
I I
1 ]
1 i

k-2 k-2 b

—

1 |
! I
! |
! 1
|

|
|
|

[ S ——Y
[FY S

i |
] [ SR W [ ——— S——
] |
L k2 1 |
' ¢

(a) Ty 2 (b) Ts.4 (c) Ts 6

I
I
i
)

Figure 8: Recursion relation, n is even

When n is even, obviously, E(Tjq) = 1.

Observe that to obtain T4 from Ty o, we add (k — 2) edges to each leaf of Ty .
As shown in figure 8b, we add 3 edges (dotted blue lines) to each of the 2 leaves
in figure 8a. Therefore, we get F(Ty4) = E(Ty2) +2(k —2) =1+ 2(k — 2).

Similarly, we get E(Ty6) = E(Tia) +2(k —2)2 =1+ 2(k — 2) + 2(k — 2)%

More generally, we find that

E(Tin) = E(Tin-2) + 2(k — 2)"7 (1)
Theorem 3.1. When n is even, the number of edges in Ty, is
2(k —2)7 — (k—1)
E(Ty,) = .
(Tien) k—3
20k —2)F — (k—1
Proof. For the base step, when n = 2, we have ( )7~ ( ) =1= E(Ty2)
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For the induction step, we apply the recursion relation:

E(Tin) = E(Tpes) + 2(k —2)"7

_2(k—2)" — (k—1) n2
= p— +2(k—2)=
C2(k-2)" — (k—1)+2(k—2)"2" (k- 3)
- o
B 2(k —2)% — (k—1)
B k—3
Thus, we conclude that
2k —2)% — (k-1
N )
(e stands for even) [
?
| k2
e s s
@ P ¢ ?
k2 | |
e % % —_—
o % . 1 b
o——1b——4
|
& k-2 l
(a) k=5n=3 (b) k=5n=5

Figure 9: Recursion relation, n is odd

When n is odd, E(Ty3) = k — 1.

To obtain T} 5 from T} 3, we add k—2 edges to each leaf Ty 5. As shown in figure 9b,
we add 3 edges (blue dotted lines) to each of the 4 leaves in figure 9a. Therefore,
we get E(Tys) = E(Ty3) + (k— 1)(k —2).

Similarly, we get E(Ty7) = E(Tys) + (k — 1)(k — 2)2



More generally, we find that

E(Tk,n) - E(Tk,n—Q) +

(k= 1)(k -

14

2)"

Theorem 3.2. When n is odd, the number of edges in Ty, is

nl

(k—l)[(k 2)"7" — 1
k—3

(k—1) [(k: _9)t 1

Proof. For the base step, when n = 3, we have 3 =k—1=
E(T3).
For the induction step, we can apply the recursion relation:
E(Tin) = E(Ton) + (k= 1)(k—2)"2"
(k= 1) (k-2 1] .
= k—1)(k—2)2
L + (k= 1(k—2)
(k=1 [(h=2)"" = 1] + (k= )(k = 2)"" (k= 3)
B k—3
_ (k=D —2)" (k—2) - (k- 1)
k—3
(k—1) [(k 2)"7* 1}
- k—3
Thus, we conclude that
k1) [(k—2)" - 1]
Ey(Tyn) =
(Tkn) k—3
(o stands for odd) [

We obtain a general formula that works for both even and odd values of n.

Corollary 3.2.1. The mazimum number of edges in a tree with no k-star and no

k—1)[(k—=2)31-1 -1
n-path is E(Ty,) = ( ) [( NE ]

L 0+ )

k—3

i (k—2)2L

Let F'(k,n) be the minimum number of edges required to guarantee the existence
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of a k-star or an n-path in a tree. The tree Ty, shows that F(k,n) > E(Ty.,) +
1.

3.2 Proof of the Upper Bound

We have found a lower bound, E(T},,) for F(k,n). We will show that F(T},)+ 1
is an upper bound for F(k,n). In other words, E(7T}.,) + 1 is sufficient and no

more edges are needed.
We approach the proof by induction.

Let T" be any tree with no k-star and at least E(Ty,) + 1 edges. We will show
that T has an n-path. The degree of each vertex is less than &, so deg(v) < k —1

for all v e V.
Let T" be T without its leaves, E(T") be the number of edges tree T” has.

Let L(T) represent the set of leaves of T, and I(T) represent the set of internal
nodes of T, so I(T') = V(T) — L(T).

Observe that the maximum length of a path in T is two more than the maximum
length path in 7".

Lemma 3.3.

2E|=Z deg v

veV
< Z 1+ Z deg v
vEL vel

< L(T) + (k = DI(T)



Since E(T) =V(T)—1, and I(T) = V(T') = E(T') + 1, we have

2L(T) + I[(T) — 1) < L(T) + (k — 1)I(T)

We will prove that E(T},—2) + 1 is also the upper bound for E(T"), so we need to
E(Ty )
k—2

prove that E(Tg o)+ 1> —1.

Proof. By induction, we can apply the lemma when n is odd,

Ey(Ti) _(k—Ukk—m%ﬁ—q (k—D“k—m%i—q
EoTen-2) = = 7~ +2= k—3 - (k—3)(k—2) 2
(k—nﬁk—m%i—w—m}—w—1Ww—2f%_q
- *k—3)(k—2) 2
 (k=1)(=k+3)
BRI
—g
k-3
BUECE
Thus, Ey(Tkn-2) +1 > EZ(T’C;) — 1.

Similarly, we can apply the lemma when n is even,

n—2

E(Ty..) C2k—-2)"T —(k—1) 2(k—2)F—(k—1)
B(Tin-2) - 325 +2= K3 T T
_Qw—Qﬁ—{k—U%—Q)—%k—%%+M%J)+2
B (k —2)(k—3)
(k= 1)(=k+3)
_(k—mw—3)+2
_k=3 50



Ee (Tk,n)

Thus, E.(Tj ,,— 1>
us, Ee(Typn2)+1> 5

— 1.
We conclude that E(T") > E(Tj,—2) + 1, for k > 3,n > 2.

Thus, as 7" will have more than F(k,n —2) 4+ 1 edges, 7" has a path length of
n — 2. Therefore, T' has n-path. We conclude that E(T}.,) + 1 is an upper bound

for the number of edges. |

Therefore, the minimum number of edges required to have either a k-star or an
(k=1 [(k=2F 1] (1 (1))

-path is tly F(k,n) =
n-path is exactly F'(k,n) p— 5

(k—2)27141.

3.3 Classification of k, n-Saturated Trees

We say that a tree T is k, n-saturated if it has no k-star or n-path but the addition

of another edge would create either a k-star or a n-path.

Theorem 3.4. The only tree with E(Ty,,) edges and no k-star or n-path is Ty,,.

Let R be any k, n-saturated tree with E(k,n) edges. We will show that R is Ty ,.
Let R’ be R without its leaves, so R’ has no k-star and no (n — 2)-path. We will

show that E(R’') = E(Tyn-2). Then, by induction, R’ = T}, ,,_o.

Note: E(R') = E(R) — L(R)

Proof. From the above proof of the upper bound, we can use the relation between
ER)—k+1

B(R) and B(R): B(R') = ——2—

For the base case, when n = 3, R’ is a vertex. Thus, R is a star, which is T} 3.

By induction, as we know that the number of edges in R is E,(7).), when n is




odd,

Eo(Tk,n) —k + 1

Pttty = k—2
(k1) [l — (k- 2)%}
— —k+3 —(k—=1)
- k—2
(k—l) {1 +k—-3— (lﬂ—2)"§l}
- (—k+3)(k—-2)
(k=1 {1 —(k—2)”'v33}
B —k+3
= EO(Tk,n_z)

Thus, by induction hypothesis, R’ is T} ,,—2.
Y yp ;

n—3

It follows from E, (T ) = Eo(Tjn-2)+ (k—1)(k—2)"= that the number of leaves

n—>5

is (k—1)(k—2)"7 in R, and we need to add (k — 2) edges to each leaf of R’ to

n—3

recover R, which is (k —1)(k —2) 2 = L(R).
For the base case, when n =4, R’ is an edge, Tk .

By induction, when n is even,

Ee(Tin)—k+1

E.(R) =
() k—2
k—1)—2(k—2)2
: lka —k=1)
N k—2
_(k=1)(k—-2)—2(k—2)2
B k—2
(k=1 -2k -2)"
B —k+3
- Ee(Tk,n—Z)

Thus, by induction hypothesis, R is Ty ,—2.

n—2

It follows from FE.(Ty,) = Ee(Tkn—2) + 2(k — 2)"z that the number of leaves is
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2(k —2)"T in R, and we need to add (k — 2) edges to each leaf of R to recover

2

R, which is 2(k — 2)"2 = L(R).

Therefore, as R = Ty ,,—2, we can conclude that R = Tj,. 5

Thus, the only k, n-saturated trees are the family of trees we constructed.
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4 Automorphism Groups of k, n-Saturated Trees

From last chapter, we can see a nice symmetry in the trees we constructed. Here
is how we relate graph theory with group theory: study the automorphism groups
of the graphs. We would like to find a general expression for all the saturated

trees automorphism groups.

To find the general formula, we look at trees with k& > 3,n > 1. Using the example
when k = 5, the graph automorphism shows a similar pattern as the number of

edges in trees. When k = 5, it is obvious that

» : ¢
(a) Aut(Ts0) = So (b) Aut(T53) = Sa

Figure 10: Aut (752), Aut (T53)

(Ts.4) (b) Aut (Ts5)

Figure 11: Aut (T54), Aut (T55)

Observe that in addition to the permutations of the two vertices in T o, the left
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three vertices in figure 1la permute with each other, and so do the right three

vertices. Thus, we have Aut(7;,4) = Sy X S?

Similarly, in figure 11b, the left three vertices permute, so do the up, bottom and

right three vertice, so we have Aut(Ts5) = Sy X S3.

For Aut(Ts6) : S; X S x 8§, we give an example of the permutations in Figure
12 to illustrate why we had the symmetry group for the automorphism:

(1313')(1012')(11 11°)(1210")(17')(28)(39)(71)(82')(93')(45')(56') (6 4')

& | 2
|
|
3 1o al e )\ ')
? I 1
|
k! 4 13, ! 13 a1 5
|
l I l
ke 12 ole 1 e
|
|
5 ! ®

Figure 12: Aut (Tsg)

We can see that 13 and 13’ permute, and the internal nodes and leaves connected

with them would permute correspondingly.

As we increase n,

Allt(T5,7) 1Sy X Sg X S;z
Aut(Tsg) : S x 82 x 8§ x S3 18

Aut(Tsg) : Sy x S; x S5 x 836
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n—2
Sy X [83}3_?__1 n even
It appears that Aut(75,) = -
Sy X [83}2(3T_1) n odd
Replacing 4 in Aut(75,,) with k& — 1 for Aut(7%.,,), and replacing 3 with k — 2, we

can see a general pattern here:

Aut(Tya) = So x 87,

= Aut(Ty2) X SF_,
Aut(Ty5) = Sk—1 X 315:21

= Aut(Ty3) x S;’f:zl
Aut(Trg) = Sy X 313-2 X Sif(—k;?)

= Aut(Tjq) x SHE2)
Aut(Ty7) = Simy x Sf7y x SEVE?

= Aut(Ty5) X S,Q’i;"““‘”

Recall that E.(Ty,) = Eo(Tin—2) + 2(k — 2)"2°, as the number of edges being

added is (k — 2) X Le(Tkn), then Lo(Tyn) = 2(k — 2)" 7 1,
Similarly, we have E,(Ty.,) = Eo(Tkn—2) + (k — 1)(k — 2)%3, SO

n—3

LofTin) = (k= 1)(k — 2)"71,

Observe that as n grows, the number of symmetry group S,_, being added to
Tk .n—2 i1s the number of leaves in Ty ,_2. Therefore, we have a recursion relation
here:

Aut(Ty) = Aut(Thpes) X [Sk_z}L(Tk.,pz)_

2k — 2)571 — 1]

We will show that when n is even, Aut.(Ty,,) = S2xSp_,, where a = P

Proof. For the base case, when n = 2, Aut.(Tyx2) = Se. By induction, we can



apply the recursion relation when n is even,

AlltS(Tk,n) = Allte(Tk,n—2) X Sk—2 Le(T}CJL—Q)

n—2
of(k—2) 2 "loq) oy B2 o1
=8y X [Sk_g] k=8 X [Sk_2]2 (k=2)"="

n b n «
2. (k~2)772—1+(k——3) 7?2
k=3

= 82 X [Sk_g}

2k—2)% "y

— 82 X [’Sk—Q} k=3

- (a3
— 82 X Sk—2

Similarly, we will show that when n is odd, Aut,(Tx.,) = Sk-1 X S',L:_Q, where

k—1 .
f=r—5lk—2) 1].

Proof. For the base case, when n = 3, Aut(7y3) = Sk—1. By induction, we apply

the same recursion relation when n is odd:

AUto(Tk,n) = Auto(Tkn—2) X Sk—2 Lo(Tkn—2)

k=1 _oy 5o -1 _ N =
= Sk—1 X [Sk—z] sl(k—2)72 ] X [Sk—z}(k 1)(k—2) 2

n—5
(k—1)(k—3+1)(k—2)" 2

= Sk-1 X [Sk—2] k=3

s n—3
=Si_1 X [gk_z}ktz—é[(k—mﬁr-u

&)
= Sk_1 X Sk—2

Thus, we conclude that
2k —2)27t = 1]

Aute(Tyn) = S2 X S, where a = , when n is even

k—3
k—1 n—: .
Aut,(Tyn) = Sgp—1 X S,f_g, where 3 = E__S[(k —-2) 7 1], when n is odd.

Observe that the pattern of o, looks similar to what we have for E(7},,), we
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want to study that: how can we relate the automorphism group to the number of

edges we found above?

Focus on the number of S;_s in Aut.(7}.,),

C2l(k—2)271—1]  2(k—2): —2(k—2)

“= k—3 - k—3
_2(k—2)8 —(k—1)—(k—3)
(k= 2)(k—3)
C2k-2)r—(k—-1) k—3
(k—2)(k—3) (k—2)(k—3)
_ Ee(k,n)—1
T k-2
k-2 @
® ®
| e com—— k-2 k-2
k-2 k-2 [N Ny V= ——~
k-1
® ® . k-2 ] k-2 1 k-2 I k-2 .
B l- ¢ @ :l
k-2 k-2
# k-2 ® 5
(a) k=5n=5 (b) k=5,n=6

Figure 13: Relation between Aut(7},,) and E(T )

Focus on the number of Sx_s in Aut,(T}.),

n—

k-1 - =Dk -2 — (k=D —2)—(k—1)+ (k—1)
ﬂ”ziﬁ(w_2) “1>‘ (k —2)(k — 3)
G-k 1) g yE—g - -
- (k—3)(k —2) B (k —2)(k — 3)
_ Eo(kan)—(k’_l)
N k—2

This is a nice property of our trees. We can see that the structure of the trees are
fairly systematic. Now we look at connected graphs and see what properties they

have.
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5 Number of Edges in Connected Graphs

Substituting “tree” with “connected graph”, we look for the maximum number of

edges that a connected graph can have to avoid both k-star and n-path.
We construct a class of connected graphs, Cy ,, starting with small &k values.

Let k = 3, in Figure 14, we can see that the maximum number of edges is n.

AOO)

(b) Cs.4 Css (d) Cs6

Figure 14: Connected graphs, k = 3

AA A

(a) Cy3 (b) Ca.4 (c) Cus

Figure 15: Connected graphs, k = 4

aCeX)

Figure 16: Connected graphs, Cyg

Let k = 4, we start with the shapes we found for £ = 3 and try to add as many

edges as possible.

As shown in Figure 15 and 16, We have found all the possible connected graphs
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up to kK = 4,n = 6. Comparing the number of maximum edges for the above
connected graphs with the one of trees, we can see that in most cases, F(Tj,) is

greater than E(Cj.p,).

E(Tyn) | # Edges E(Ck,) | # Edges
(4,3) 3 (4,3) 3
(4,4) 5 (4,4) 6
(4,5) 9 (4,5) 7
(4,6) 13 (4,6) 8
(4,7) 21 (4,7)

(4,8) 29 (4,8)

Let’s look at the complete graph on k vertices in Figure 17, which gives the max-

imum number of edges,

A 7 i:\\\\
4.” 1\“\ / j" \ N
;‘! ; V‘\ '(4,/ j \ ™~
/ 1\ yd / N
/ | \ g
!f' | "«\ \'%i/ .1; 311 -
/ | \ ) X /
f‘f ? \\ t’i\\.\ ;/ 3‘&% / j
/ | N\ A / \ /
f‘ E \\ N / \ / f
/ N/ \Vd /
/ | \\ \\ \ . 7\ 5[
/ /5\ \ \ !,; \\\ 7\ /
/ - \ \ / \ /
/ o \ \ / ’>< \ /
/ \\\ \ \\ / i \\\ \ /
-~ \ A f
rd ™~ \ \ / / o\
Ve ~\ \~ Y,
& N ’ ¥

Figure 17: Complete Graphs

we can see that K, is a 4, 4-saturated connected graph and Kj is a 5, 5-saturated
connected graph. We can use the fact that when k = n, K,, gives the maximum
number of edges for Cy ,,, which is k—(k;—I) Recall that in E(Tj,), we have (k — 1)
multiplied with (k—2) to some power, which grows faster than complete connected

graph, (k — 1) multiplied with g

If we only allow connected graphs that are not trees, then the maximum number

of edges in Cy,, will always be smaller than E(Ty,) except E(Cyq).

Since we want to know the minimum number of edges required to have either a
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k-star or an n-path, we should have as less edges as possible, which is E(Cy,,) +
1. However, with E(Cj,) + 1 edges, if we rearrange the edges following a tree
structure, then we will have no k-star or n-path given that E(Cy,,) < E(Ty,,) for

most cases.

Thus, we have the conjecture that F(Cy,) +1 = F(k,n) = E(T},) + 1, when

k> 3,n>3except k =4,n = 4.

In addition, observe that both figure 15¢ and figure 15d are 4, 5-saturated con-
nected graphs. All the connected graphs in Figure 16 are 4, 6-saturated connected
graphs. As a result, we have shown that k,n-saturated graphs will have multiple
possible structures as the value of & or n increases. Therefore, with E(T}.,,) + 1,
the connected graphs we constructed will not be the only &, n-saturated connected

graphs. Thus, the classification of them is worthy further study in the future.
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