PHYSICS 305 COURSE SYLLABUS

Course Information

Course Title: Dynamics Fall Semester, 1998

Meeting Time: TuTh 8:00-9:30 Meeting Place: FJ 102

Instructor: Brent Hoffmeister

Office: 215 RT Lab: 319 RT

Office Phone: X3913

Office Hours: 9:30-12:00 TuTh, 10:30-12:00 MWF,

1:00-3:00 M, other times by appointment

Text

Fowles & Cassiday, *Analytical Mechanics*, Fifth Edition, Saunders College Publishing, ISBN 0-03-096022-3

Course Requirements

1. Four tests as scheduled on course calendar	40%
2. Homework	40%
3. Final exam	20%

Grading Procedures

All graded work will be assigned a numerical score. You may estimate the
corresponding letter grade by computing a percentage score and comparing it with the
table below:

Percentage Score = (Your Score / Total Possible) * 100

Percentage Score	Approximate Letter Grade	
90-100	A	
80-89	В	
70-79	C	
60-69	D	
Below 60	F	

- Late homework assignments will be penalized by 10% of the total possible score per day that they are late.
- Make-up exams may be arranged on the condition that the student notifies the instructor in advance of missing an exam. Make-up exams will typically prove more difficult than the original.

•	The conditions of the Honor Code described in the Rhodes College Student Hand Book apply to all assignments in this course unless specified otherwise by the instructor.

Course Calendar

Date	Subject	Problem Set Due
Thu. Aug. 27	Ch. 1: Fundamental Concepts. Vectors	
Tue. Sep. 1	Ch. 1: Fundamental Concepts. Vectors	
Thu. Sep. 3	Ch. 1: Fundamental Concepts. Vectors	
Tue. Sep. 8	Ch. 2: Newtonian Mechanics. Particle Motion	Ch. 1
Thu. Sep. 10	Ch. 2: Newtonian Mechanics. Particle Motion	
Tue. Sep. 15	Ch. 2: Newtonian Mechanics. Particle Motion	Ch. 2 (a)
Thu. Sep. 17	Ch. 2: Newtonian Mechanics. Particle Motion	
Tue. Sep. 22	Ch. 3: Oscillations	Ch. 2 (b)
Thu. Sep. 24	Test 1	
Tue. Sep. 29	Ch. 3: Oscillations	
Thu. Oct. 1	Ch. 3: Oscillations	Ch. 3 (a)
Tue. Oct. 6	Ch. 3: Oscillations	
Thu. Oct. 8	Ch. 4: General Motion of a Particle in 3-D	Ch. 3 (b)
Tue. Oct. 13	Test 2	
Thu. Oct. 15	Ch. 4: General Motion of a Particle in 3-D	
Tue. Oct. 20	(Fall Recess)	
Thu. Oct. 22	Ch. 4: General Motion of a Particle in 3-D	Ch. 4 (a)
Tue. Oct. 27	Ch. 4: General Motion of a Particle in 3-D	
Thu. Oct. 29	Ch. 8: Mechanics of Rigid Bodies. Planar Motion	Ch. 4 (b)
Tue. Nov. 3	Test 3	
Thu. Nov. 5	Ch. 8: Mechanics of Rigid Bodies. Planar Motion	
Tue. Nov. 10	Ch. 8: Mechanics of Rigid Bodies. Planar Motion	Ch. 8 (a)
Thu. Nov. 12	Ch. 8: Mechanics of Rigid Bodies. Planar Motion	
Tue. Nov. 17	Guest Speaker: Dr. Ciprian Foias	
Thu. Nov. 19	Ch. 10: Lagrangian Mechanics	Ch. 8 (b)
Tue. Nov. 24	Test 4	
Thu. Nov. 26	(Thanksgiving Recess)	
Tue. Dec. 1	Ch. 10: Lagrangian Mechanics	
Thu. Dec. 3	Ch. 10: Lagrangian Mechanics	
Tue. Dec. 8	Ch. 10: Lagrangian Mechanics	Ch. 10