Course Summary

This list is subject to changes, additions, and deletions during the course of the semester.

Automata

- 1. The following are equivalent for a language L:
 - (a) There is a (deterministic) finite automaton (DFA) which recognizes L (i.e., L is regular).
 - (b) There is a non-deterministic finite automaton (NFA) which recognizes L.
 - (c) L is described by a regular expression.
- 2. The pumping lemma for regular languages provides a way of showing that languages are not regular.
- 3. The following are equivalent for a language L:
 - (a) There is a pushdown automaton (PDA) which recognizes L.
 - (b) L has a context-free grammar (CFG).
- 4. The pumping lemma for context-free languages provides a way of showing that languages are not context-free.

Computability

- 5. The following are equivalent for a language L:
 - (a) There is a Turing machine which recognizes L (i.e., L is Turing-recognizable).
 - (b) There is a multi-tape Turing machine which recognizes L.
 - (c) There is a non-deterministic Turing machine which recognizes L.
 - (d) Some enumerator enumerates L.
- 6. The following are equivalent for a language L:
 - (a) There is a Turing machine which decides L (i.e., L is Turing-decidable).
 - (b) There is a multi-tape Turing machine which decides L.
 - (c) There is a non-deterministic Turing machine which decides L.
 - (d) Both L and its complement are Turing-recognizable.

- 7. The Church-Turing thesis says that Turing decidability correctly captures the intuitive notion of algorithmic solvability.
- 8. The acceptance problems for DFAs, NFAs, and CFGs are decidable.
- 9. The halting problem for Turing machines is undecidable.

Complexity

- 10. No one knows whether P = NP.
- 11. If any NP-complete problem is in P, then all problems in NP are in P (i.e., then P = NP).