Chemistry 212, Organic Chemistry Lecture
Spring, 2003 - C Hour, Room 205 Kennedy Hall
Dr. Richard Redfearn
Office – 409 Kennedy Hall
843-3960 (o), 272-3472 (h); redfearn@rhodes.edu

Description: This course will continue the general survey of theory, preparation, reactions, and properties of the compounds of carbon containing the most important functional groups. Also included this semester will be spectroscopic methods used to analyze organic compounds.

Goals: To be successful in this course, the goals that you should work towards are:

1. Applying what you learned in General Chemistry and the first course in Organic Chemistry to be able to understand the basics of physical and chemical properties of organic compounds.

2. Continuing to refine the ability to identify organic functional groups; also to identify the types of reactions each organic functional group undergoes, organized by mechanism.

3. Learning to understand and describe the practical uses of organic compounds - in medical research, industry, and everyday life.

4. Achieving the ultimate goal of understanding the relationships between chemical structure vs. reactivity and vs. physical/chemical properties of organic compounds and materials.

Note: Your goals in this course should not only be to memorize a series of organic transformations, but to understand and demonstrate how these many different reactions all flow from a basic set of fundamental principles. You will then be able to apply your knowledge of known systems to new ones.

The bookstore also has a supply of relatively inexpensive plastic “tinker toy” molecular models, which are highly recommended.

Evaluation: Your final grade will be earned with three hour-long exams (100 points each), plus the average of 10 weekly quizzes (100 points), and the final exam (200 points). About weekly quizzes: you will take 14 quizzes, and I will drop your four lowest quiz grades, averaging the 10 highest grades for the 100 points. The advantage of taking these short little tests is for you to get an evaluation of your progress that week. This will keep you on track and give me valuable feedback about my teaching effectiveness.
The grading scale is:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>558-600</td>
</tr>
<tr>
<td>A-</td>
<td>540-557</td>
</tr>
<tr>
<td>B+</td>
<td>522-539</td>
</tr>
<tr>
<td>B</td>
<td>498-521</td>
</tr>
<tr>
<td>B-</td>
<td>480-497</td>
</tr>
<tr>
<td>C+</td>
<td>462-479</td>
</tr>
<tr>
<td>C</td>
<td>438-461</td>
</tr>
<tr>
<td>C-</td>
<td>420-437</td>
</tr>
<tr>
<td>D+</td>
<td>378-419</td>
</tr>
<tr>
<td>D</td>
<td>336-377</td>
</tr>
<tr>
<td>D-</td>
<td>300-335</td>
</tr>
</tbody>
</table>

Also, please note: As part of your evaluation, you will be required to attend at least two presentations at the April 29, 2003 Undergraduate Research and Creative Activity Symposium. One of these must be related to natural science, and the other must be in one of the sessions offered from the Social Science, Fine Arts, or Humanities division. This is being required in an effort to broaden your understanding of the breadth of the creative activity being done by your fellow students, so I do not want you to only attend Natural Science presentations, rather to expand your experience with the consideration of other types of scholarship.

Policies: Your attendance at every lecture is expected and is important to effective progress in this course. You will get the most out of the lectures by being prepared – by reading the assigned material before the lecture. Each reading assignment should be read twice, once quickly and then in detail. Problem assignments should be done promptly, since these assignments are designed to help clarify the lecture material. However, assigned problems will not be graded.

If you find it necessary to miss a class, check my folder on the academic volume for any special reading assignment for the next lecture, and any new assigned problems for the lecture that you missed. You will be allowed to make up a missed quiz/exam only with an excused absence. If possible, you should let me know ahead of time if you are unable to take a quiz or exam at its scheduled time. If your absence for a quiz or exam is not excused, you will receive no points for that evaluation.

I strongly encourage the use of molecular models, and you may use them during exams, EXCEPT for the Final Exam, which will be the ACS Organic Chemistry Standardized Exam. You will also have available the chemical drawing programs - ChemDraw and Chem3D. If you do not have a personal computer, these programs are available on computers in the computer center (Buckman Hall).

Of course, the Honor Code governs your behavior in this class, and all work turned in for grading must be pledged to be your own. The lecture schedule is only a rough guide, and most likely will not be strictly adhered to. The quiz/exam schedule will be followed exactly. Quiz questions will be selected from assigned problems or similar ones.
My door is always open to you for questions regarding your progress in this class, and I am very interested in helping you to be successful in your study of organic chemistry. Please feel free to drop by 409 Kennedy, or see me in one of my labs on the fourth floor.

Tips on doing well in organic chemistry:

1. **Show up to class.** It will take much longer to learn the material on your own, rather than relying upon your instructor’s help. If you fall behind in organic chemistry, it’s extremely difficult to catch up.

2. **Ask questions!** (of course this only applies if you follow rule number one). There is no way that you are going to understand every aspect of this course without asking questions, so stick your hand up and ask away. For that matter, visit me at my office. If we can’t clear up the confusion in 15 minutes or so, we will schedule a longer tutorial appointment at a mutually agreed-upon time.

3. **Read and understand the material in the text.** First, scan the chapter to gain an appreciation of the highlights. Then, back up and read in detail, taking time to do the in-text problems. Then, start to work on the assigned problems. Count on 1½ to 2 hours of study for every lecture hour, more if you are having trouble with the material.

4. **Take good notes.** Come to class prepared by reading and summarizing the chapter before we go over it in class. Pay attention and take good notes while in class. After each class read over, rephrase, and rewrite your notes while the day’s topic is still fresh on your mind. Click here for suggestions on learning how to take good lecture notes. (http://www.unr.edu/acssv/ASC/skills/notes/notes.html)

5. **Practice, practice, practice!** There is no easy way around this. Don't just look to see what the solution manual says before you have done a problem. Use it only when you have wrestled and fought *mano a mano* with a problem for at least fifteen minutes, and it has come out the victor.

6. **Find a study partner or organize a study group.** Sometimes an explanation from a fellow student will seem clearer to you than my explanation. I have little interest in exactly how you learn, only that you do learn the material – we all have different learning styles. Drilling each other will really help with learning how to solve organic problems.

7. **Learn how to be smart on exams.** Click here for "Ten ways to pass your next chemistry exam." (Also check out the links here to more chemistry information, especially “Just Ask Antoine!”) http://antoine.frostburg.edu/chem/senese/101/examtips.shtml

8. **Use www links to chemistry education sites.** Some are included here, and we will discover more together.

 - http://www.chem.ucla.edu/~webspectra/ spectroscopy problems, with solutions
 - http://www.nd.edu/~smithgrp/structure/workbook.html spectroscopy problems, without solutions
 - http://www.cem.msu.edu/~parrill/ (thanks to Prof. Abby Parrill, Univ. of Memphis)
 - http://www.colby.edu/chemistry/OChem/demoindex.html - table (Colby College)
 - http://blair.library.rhodes.edu/chemtesthtmls/chemnet.html (Rhodes College library)
CLASS SCHEDULE:

<table>
<thead>
<tr>
<th>WEEK</th>
<th>DATE</th>
<th>MATERIAL STUDIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>January 15</td>
<td>Welcome back & refresher on organic chemistry, or natural beauty</td>
</tr>
<tr>
<td></td>
<td>January 17</td>
<td>Chapter 12 QUIZ 1: spectrometry/spectroscopy “workshop”</td>
</tr>
<tr>
<td>Week 2</td>
<td>January 22</td>
<td>Chapter 13: (^{13})C NMR & refresher on (^{1})H NMR</td>
</tr>
<tr>
<td></td>
<td>January 24</td>
<td>Chapter 13 QUIZ 2</td>
</tr>
<tr>
<td>Week 3</td>
<td>January 27</td>
<td>Chapter 14: Mass Spectrometry</td>
</tr>
<tr>
<td></td>
<td>January 29</td>
<td>Chapter 14</td>
</tr>
<tr>
<td></td>
<td>January 31</td>
<td>Chapter 14 QUIZ 3</td>
</tr>
<tr>
<td>Week 4</td>
<td>February 3</td>
<td>EXAM 1</td>
</tr>
<tr>
<td></td>
<td>February 5</td>
<td>Chapter 23: Conjugated Systems</td>
</tr>
<tr>
<td></td>
<td>February 7</td>
<td>Chapter 23 QUIZ 4</td>
</tr>
<tr>
<td>Week 5</td>
<td>February 10</td>
<td>Chapter 15: Organometallic Compounds</td>
</tr>
<tr>
<td></td>
<td>February 12</td>
<td>Chapter 15</td>
</tr>
<tr>
<td></td>
<td>February 14</td>
<td>Chapter 15 QUIZ 5</td>
</tr>
<tr>
<td>Week 6</td>
<td>February 17</td>
<td>Chapter 16: Aldehydes and Ketones</td>
</tr>
<tr>
<td></td>
<td>February 19</td>
<td>Chapter 16</td>
</tr>
<tr>
<td></td>
<td>February 21</td>
<td>Chapter 17: Carboxylic Acids QUIZ 6</td>
</tr>
<tr>
<td>Week 7</td>
<td>February 24</td>
<td>Chapter 17</td>
</tr>
<tr>
<td></td>
<td>February 26</td>
<td>Chapter 18: Derivatives of Carboxylic Acids</td>
</tr>
<tr>
<td></td>
<td>February 28</td>
<td>Chapter 18 QUIZ 7</td>
</tr>
<tr>
<td>Week 8</td>
<td>March 3</td>
<td>EXAM 2</td>
</tr>
<tr>
<td></td>
<td>March 5</td>
<td>Chapter 19: Enolate Anions and Enamines</td>
</tr>
<tr>
<td></td>
<td>March 7</td>
<td>Chapter 19 QUIZ 8</td>
</tr>
<tr>
<td>Week 9</td>
<td>March 17</td>
<td>Chapter 19</td>
</tr>
<tr>
<td></td>
<td>March 19</td>
<td>Chapter 20: Aromatics I: Benzene and Derivatives</td>
</tr>
<tr>
<td></td>
<td>March 21</td>
<td>Chapter 20 QUIZ 9</td>
</tr>
<tr>
<td>Week 10</td>
<td>March 24</td>
<td>Chapter 21: Aromatics II: Reactions of Benzene and Derivatives</td>
</tr>
<tr>
<td></td>
<td>March 26</td>
<td>Chapter 21</td>
</tr>
<tr>
<td></td>
<td>March 28</td>
<td>Chapter 21 QUIZ 10</td>
</tr>
<tr>
<td>Week 11</td>
<td>March 31</td>
<td>Chapter 22: Amines</td>
</tr>
<tr>
<td></td>
<td>April 2</td>
<td>Chapter 22</td>
</tr>
<tr>
<td></td>
<td>April 4</td>
<td>Chapter 22 QUIZ 11</td>
</tr>
<tr>
<td>Week 12</td>
<td>April 7</td>
<td>EXAM 3</td>
</tr>
<tr>
<td></td>
<td>April 9</td>
<td>Interchapter: Medicinal Chemistry</td>
</tr>
<tr>
<td></td>
<td>April 11</td>
<td>Chapter 24: Organic Polymer Chemistry QUIZ 12</td>
</tr>
<tr>
<td>Week 13</td>
<td>April 14</td>
<td>Chapter 24</td>
</tr>
<tr>
<td></td>
<td>April 16</td>
<td>Chapter 25: Carbohydrates</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE</td>
<td>MATERIAL STUDIED</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Week 14</td>
<td>April 21</td>
<td>Chapter 26: Lipids</td>
</tr>
<tr>
<td></td>
<td>April 23</td>
<td>Chapter 26</td>
</tr>
<tr>
<td></td>
<td>April 25</td>
<td>Chapter 27: Amino Acids and Proteins QUIZ 13</td>
</tr>
<tr>
<td>Week 15</td>
<td>April 28</td>
<td>Chapter 27</td>
</tr>
<tr>
<td></td>
<td>April 29</td>
<td>Undergraduate Research & Creative Activity Symposium</td>
</tr>
<tr>
<td></td>
<td>April 30</td>
<td>Chapter 28: Nucleic Acids</td>
</tr>
<tr>
<td></td>
<td>May 2</td>
<td>Chapter 28 QUIZ 14</td>
</tr>
<tr>
<td></td>
<td>May 5 (Mon)</td>
<td>FINAL EXAM, 1:00-3:30 pm</td>
</tr>
</tbody>
</table>