Exploring Linear Relations Among Laurent Coefficients of Certain Hilbert Series

Austin Barringer, Rhodes College

URCAS

April 27, 2018

A. Barringer (Rhodes College)

Laurent Coefficients of Hilbert Series

April 27, 2018 1 / 21

Outline

Background

2 Research

Suture

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Definitions

Our examples can be expressed in the following way:

$$h(t_1, t_2) = rac{p(t)}{(1-t_1^m)(1-t_2^n)},$$

where p(t) is a polynomial and $m, n \in \mathbb{N}$.

(日) (同) (三) (三)

Definitions

Our examples can be expressed in the following way:

$$h(t_1, t_2) = rac{p(t)}{(1-t_1^m)(1-t_2^n)},$$

where p(t) is a polynomial and $m, n \in \mathbb{N}$.

Definition

We say $h(t_1, t_2)$ is Gorenstein if there is an a_1 and $a_2 \in \mathbb{Z}$ such that

$$h(1/t_1, 1/t_2) = t_1^{-a_1} t_2^{-a_2} h(t_1, t_2).$$

If such a_1, a_2 exist, then these integers are called the a-invariants.

Definitions

Our examples can be expressed in the following way:

$$h(t_1, t_2) = rac{p(t)}{(1-t_1^m)(1-t_2^n)},$$

where p(t) is a polynomial and $m, n \in \mathbb{N}$.

Definition

We say $h(t_1, t_2)$ is Gorenstein if there is an a_1 and $a_2 \in \mathbb{Z}$ such that

$$h(1/t_1, 1/t_2) = t_1^{-a_1} t_2^{-a_2} h(t_1, t_2).$$

If such a_1, a_2 exist, then these integers are called the a-invariants.

We are particularly in the case where $a_1 + a_2 + d = 0$, where d is the dimension.

The Laurent Series

Analysis can be done on the Laurent expansion of the rational function h(t) at t = 1.

< ロ > < 同 > < 三 > < 三

The Laurent Series

Analysis can be done on the Laurent expansion of the rational function h(t) at t = 1.

Definition

The Laurent series of a function f(z) that is analytic through a domain besides a point z_0 is given by

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n},$$

where

$$a_{n} = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z - z_{0})^{n+1}} dz$$
$$b_{n} = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z - z_{0})^{-n+1}} dz$$

Laurent Coefficients of Hilbert Series

Example

Consider the function

$$h(t)=\frac{1}{(1-t)}.$$

To find the Laurent series, we express h(t) in the following way:

$$\frac{1}{1-t} = \frac{1}{t} \left(\frac{1}{1/t - 1} \right)$$
$$= \frac{-1}{t} \left(\frac{1}{1 - 1/t} \right)$$
$$= \frac{-1}{t} \sum_{n=0}^{\infty} \frac{1}{t^n}$$
$$= -\sum_{n=0}^{\infty} \frac{1}{t^{n+1}}$$

A. Barringer (Rhodes College)

Laurent Coefficients of Hilbert Series

April 27, 2018 5 / 21

< ロ > < 同 > < 三 > < 三

Background

In [2], Cowie et al. found that when **a** is generic the first term in the Laurent expansion, γ_0 , is given by

$$\gamma_0(\mathbf{a}) = \sum_{i=1}^k \frac{-a_i^{n-2}}{\prod_{\substack{j=1\\i\neq j}}^n (a_i - a_j)},$$

where again *n* is the dimension of the weight vector **a** and *k* is the number of negative weights. In particular, $\gamma_0(\mathbf{a}) \neq 0$.

イロト 人間ト イヨト イヨト

Example

Example

```
a-Invariants (-1,-1) Dimension 2
```

```
In[64] = h[t1_, t2_] := (t1^{2}t2^{2})/((1-t1^{43})(1-t2^{47}))
Simplify[h[t1, t2]]
Simplify[h[1/t1, 1/t2]]
h[1/t1, 1/t2] - (t1^{12^{21}}) h[t1, t2]//Simplify
Out[65]=\frac{t1^{21}t2^{23}}{(-1+t1^{43})(-1+t2^{47})}
Out[66]=\frac{t1^{22}t2^{24}}{(-1+t1^{43})(-1+t2^{47})}
Out[67]= 0
(*a-invariants (1,1))
```

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example

Example a-Invariants (-2,-2) Dimension 4

h2[1/z1, 1/z2] = (z1 ^ 2z2 ^ 2) h2[z1, z2] // Simplify Cump: 0

Exploring Relations

Our coefficients are defined iteratively as the Laurent coefficients at $t_2 = 1$ of the Laurent coefficients at $t_1 = 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Exploring Relations

- Our coefficients are defined iteratively as the Laurent coefficients at $t_2 = 1$ of the Laurent coefficients at $t_1 = 1$.
- To find relations, we establish a system of equations involving the series coefficients of each example. We use a function like the following: Sum [c[[j]]* SeriesCoefficient[
- $SeriesCoefficient[h1[t1,t2], {t1, 1, -1}], {t2, 1, i}], {i,min, max}] == 0$

イロト 人間ト イヨト イヨト

Example

Example

a-Invariants (1,1) Dimension 2

$\ln[7] = h[t1_, t2_] := (t1^2 27 t2^2)/((1 - t1^53)(1 - t2^45))$

ex1 = Table[(-1)^(i+j) SeriesCoefficient[SeriesCoefficient[h[t1, t2], {t1, 1, i}], {t2, 1, j}], {i, -1, 6}, {j, -1, 6}];
MatrixForm[ex1]

- 265 265 0 - 3 975 - 11 925 11 925 _ 156 988 156 988 39 717 964 ₀ _ 35 229 834 068 _ 35 229 834 068 5 545 263 261 824 11 196 216 025 852	Out[8]= Null	156 988	156 988	39 717 964	-	35 229 834 068	35 229 834 068	5 545 263 261 824	11 196 216 025 852
- 265 265 795 0 - 11 925 11 925 35 775 35 775		265	265	795	0	11 925	11 925	35 775	35 775

3

(日) (同) (三) (三)

Research

Example

```
(d228= min = 10
    max = 18
    g = i + 3
    c = {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21}
    Solve[
      {Sum[c[[g]]*
         SeriesCoefficient
           SeriesCoefficient[h1[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0,
       Sun [c[[g]] *
        SeriesCoefficient[
           SeriesCoefficient[h2[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0,
       Sun [c[[g]]*
         SeriesCoefficient[
           SeriesCoefficient[h3[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0,
       Sun[c[[g]]*
         SeriesCoefficient
           SeriesCoefficient[h4[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0,
       Sun [c[[g]]*
         SeriesCoefficient[
           SeriesCoefficient[h5[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0,
       Sun [c[[g]]*
         SeriesCoefficient
           SeriesCoefficient[h6[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0,
       Sun [c[[g]]*
         SeriesCoefficient[
           SeriesCoefficient[h7[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0,
       Sun[c[[g]] *
         SeriesCoefficient
           SeriesCoefficient[h8[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0,
       Sun [c[[g]]*
         SeriesCoefficient
           SeriesCoefficient[h9[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0,
       Sun [c[[g]] *
         SeriesCoefficient[
           SeriesCoefficient[h10[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0,
       Sum[c[[g]]*
         SeriesCoefficient[
           SeriesCoefficient[h1[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0}, {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21}]
```

 $\textit{Out232} = \{ \{ \texttt{c14} \rightarrow \texttt{8 c13}, \texttt{c15} \rightarrow \texttt{28 c13}, \texttt{c16} \rightarrow \texttt{56 c13}, \texttt{c17} \rightarrow \texttt{70 c13}, \texttt{c18} \rightarrow \texttt{56 c13}, \texttt{c19} \rightarrow \texttt{28 c13}, \texttt{c20} \rightarrow \texttt{8 c13}, \texttt{c21} \rightarrow \texttt{c13} \} \}$

Research

Relations

$$\begin{aligned} \gamma_{0} &= 0 \\ \gamma_{1} = \textit{unrestricted} \\ \gamma_{2} + \gamma_{3} &= 0 \\ \gamma_{3} + 2\gamma_{4} + \gamma_{5} &= 0 \\ \gamma_{4} + 3\gamma_{5} + 3\gamma_{6} + \gamma_{7} &= 0 \\ \gamma_{5} + 4\gamma_{6} + 6\gamma_{7} + 4\gamma_{8} + \gamma_{9} &= 0 \\ \gamma_{6} + 5\gamma_{7} + 10\gamma_{8} + 10\gamma_{9} + 5\gamma_{10} + \gamma_{11} &= 0 \\ \gamma_{7} + 6\gamma_{8} + 15\gamma_{9} + 20\gamma_{10} + 15\gamma_{11} + 6\gamma_{12} + \gamma_{13} &= 0 \\ \gamma_{8} + 7\gamma_{9} + 21\gamma_{10} + 35\gamma_{11} + 35\gamma_{12} + 21\gamma_{13} + 7\gamma_{14} + \gamma_{15} &= 0 \\ \gamma_{9} + 8\gamma_{10} + 28\gamma_{11} + 56\gamma_{12} + 70\gamma_{13} + 56\gamma_{14} + 28\gamma_{15} + 8\gamma_{16} + \gamma_{17} &= 0 \\ \gamma_{9} + 8\gamma_{10} + 28\gamma_{11} + 56\gamma_{12} + 70\gamma_{13} + 56\gamma_{14} + 28\gamma_{15} + 8\gamma_{16} + \gamma_{17} &= 0 \\ \gamma_{9} + 8\gamma_{10} + 28\gamma_{11} + 56\gamma_{12} + 70\gamma_{13} + 56\gamma_{14} + 28\gamma_{15} + 8\gamma_{16} + \gamma_{17} &= 0 \\ \gamma_{9} + 8\gamma_{10} + 28\gamma_{11} + 56\gamma_{12} + 70\gamma_{13} + 56\gamma_{14} + 28\gamma_{15} + 8\gamma_{16} + \gamma_{17} &= 0 \\ \gamma_{9} + 8\gamma_{10} + 28\gamma_{11} + 56\gamma_{12} + 70\gamma_{13} + 56\gamma_{14} + 28\gamma_{15} + 8\gamma_{16} + \gamma_{17} &= 0 \\ \gamma_{9} + 8\gamma_{10} + 28\gamma_{11} + 56\gamma_{12} + 70\gamma_{13} + 56\gamma_{14} + 28\gamma_{15} + 8\gamma_{16} + \gamma_{17} &= 0 \\ \gamma_{9} + 8\gamma_{10} + 28\gamma_{10} + 2$$

Examples with Pascal relations:

• a-Invariants (-1,-1) Dimension 2. Row one and column one.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Examples with Pascal relations:

- a-Invariants (-1,-1) Dimension 2. Row one and column one.
- a-Invariants (-2,-2) Dimension 4. Row one.

- 32

イロト イポト イヨト イヨト

Examples with Pascal relations:

- a-Invariants (-1,-1) Dimension 2. Row one and column one.
- a-Invariants (-2,-2) Dimension 4. Row one.
- a-Invariants (-4,-4) Dimension 8. Row one.

イロト イポト イヨト イヨト

Examples with Pascal relations:

- a-Invariants (-1,-1) Dimension 2. Row one and column one.
- a-Invariants (-2,-2) Dimension 4. Row one.
- a-Invariants (-4,-4) Dimension 8. Row one.
- a-Invariants (1,1) Dimension 2. Row one and column one.

- 3

13 / 21

Examples with Pascal relations:

- a-Invariants (-1,-1) Dimension 2. Row one and column one.
- a-Invariants (-2,-2) Dimension 4. Row one.
- a-Invariants (-4,-4) Dimension 8. Row one.
- a-Invariants (1,1) Dimension 2. Row one and column one.
- a-Invariants (2,1) Dimension 2. Row one.

・ロン ・四 ・ ・ ヨン ・ ヨン

Examples with Pascal relations:

- a-Invariants (-1,-1) Dimension 2. Row one and column one.
- a-Invariants (-2,-2) Dimension 4. Row one.
- a-Invariants (-4,-4) Dimension 8. Row one.
- a-Invariants (1,1) Dimension 2. Row one and column one.
- a-Invariants (2,1) Dimension 2. Row one.
- a-Invariants (-2,-1) Dimension 2. Row one.

Examples with Pascal relations:

- a-Invariants (-1,-1) Dimension 2. Row one and column one.
- a-Invariants (-2,-2) Dimension 4. Row one.
- a-Invariants (-4,-4) Dimension 8. Row one.
- a-Invariants (1,1) Dimension 2. Row one and column one.
- a-Invariants (2,1) Dimension 2. Row one.
- a-Invariants (-2,-1) Dimension 2. Row one.
- a-Invariants (-3,1) Dimension 2. Row one.

- 本語 医 本 医 医 一 医

Examples with Pascal relations:

- a-Invariants (-1,-1) Dimension 2. Row one and column one.
- a-Invariants (-2,-2) Dimension 4. Row one.
- a-Invariants (-4,-4) Dimension 8. Row one.
- a-Invariants (1,1) Dimension 2. Row one and column one.
- a-Invariants (2,1) Dimension 2. Row one.
- a-Invariants (-2,-1) Dimension 2. Row one.
- a-Invariants (-3,1) Dimension 2. Row one.
- a-Invariants (-3,-1) Dimension 2. Row one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

The Lucas Triangle

$$\begin{split} \gamma_{0} &= 0 \\ \gamma_{1} = \textit{unrestricted} \\ \gamma_{2} + 2\gamma_{3} &= 0 \\ \gamma_{3} + 3\gamma_{4} + 2\gamma_{5} &= 0 \\ \gamma_{4} + 4\gamma_{5} + 5\gamma_{6} + 2\gamma_{7} &= 0 \\ \gamma_{5} + 5\gamma_{6} + 9\gamma_{7} + 7\gamma_{8} + 2\gamma_{9} &= 0 \\ \gamma_{6} + 6\gamma_{7} + 14\gamma_{8} + 16\gamma_{9} + 9\gamma_{10} + 2\gamma_{11} &= 0 \\ \gamma_{7} + 7\gamma_{8} + 20\gamma_{9} + 30\gamma_{10} + 25\gamma_{11} + 11\gamma_{12} + 2\gamma_{13} &= 0 \\ \gamma_{8} + 8\gamma_{9} + 27\gamma_{10} + 50\gamma_{11} + 55\gamma_{12} + 36\gamma_{13} + 13\gamma_{14} + 2\gamma_{15} &= 0 \\ \gamma_{9} + 9\gamma_{10} + 35\gamma_{11} + 77\gamma_{12} + 105\gamma_{13} + 91\gamma_{14} + 49\gamma_{15} + 15\gamma_{16} + 2\gamma_{17} &= 0 \\ \end{split}$$

Examples with the Lucas triangle:

• a-Invariants (-1,-1) Dimension 2. Row two and column two.

3

イロト イヨト イヨト イヨト

Examples with the Lucas triangle:

- a-Invariants (-1,-1) Dimension 2. Row two and column two.
- a-Invariants (-3,-3) Dimension 6. Row one.

・ロン ・四 ・ ・ ヨン ・ ヨン

3

15 / 21

Examples with the Lucas triangle:

- a-Invariants (-1,-1) Dimension 2. Row two and column two.
- a-Invariants (-3,-3) Dimension 6. Row one.
- a-Invariants (-2,-1) Dimension 2. Column one.

イロト イポト イヨト イヨト

Conclusions

 Almost surely relations in row one, and most of the time they involve Pascal's triangle. In most cases, there are relations in column one as well, also involving Pascal's triangle.

Conclusions

- Almost surely relations in row one, and most of the time they involve Pascal's triangle. In most cases, there are relations in column one as well, also involving Pascal's triangle.
- Seems unlikely that the analog to univariate case is the sum of the a-invariants and dimension $(a_1 + a_2 + d = r)$. The (-3,-3) and (-3,1) cases are acting up.

• Search the (-5,-5) dimension 10 case.

3

(日) (同) (三) (三)

- Search the (-5,-5) dimension 10 case.
- Further investigate column one in $a_1 + a_2 + d = 0$ cases.

3

- 4 @ > - 4 @ > - 4 @ >

- Search the (-5,-5) dimension 10 case.
- Further investigate column one in $a_1 + a_2 + d = 0$ cases.
- Furhter investigate subsequent rows and columns of other random examples.

Image: A matrix and a matrix

- Search the (-5,-5) dimension 10 case.
- Further investigate column one in $a_1 + a_2 + d = 0$ cases.
- Furhter investigate subsequent rows and columns of other random examples.
- Derive a formula for given gammas in the Laurent expansion.

References

- Christopher Seaton. Private notes.
- Emily Cowie, Hans-Christian Herbig, Daniel Herden, and Christopher Seaton. The Hilbert series and a-invariant of circle invariants. To appear in the Journal of Pure and Applied Algebra.
- Harm Derksen, Gregor Kemper. Computational Invariant Theory Second Edition. Springer, 2015.