Exploring Linear Relations Among Laurent Coefficients of Certain Hilbert Series

Austin Barringer, Rhodes College

URCAS
April 27, 2018

Outline

(1) Background
(2) Research
(3) Future

Definitions

Our examples can be expressed in the following way:

$$
h\left(t_{1}, t_{2}\right)=\frac{p(t)}{\left(1-t_{1}^{m}\right)\left(1-t_{2}^{n}\right)},
$$

where $p(t)$ is a polynomial and $m, n \in \mathbb{N}$.

Definitions

Our examples can be expressed in the following way:

$$
h\left(t_{1}, t_{2}\right)=\frac{p(t)}{\left(1-t_{1}^{m}\right)\left(1-t_{2}^{n}\right)},
$$

where $p(t)$ is a polynomial and $m, n \in \mathbb{N}$.
Definition
We say $h\left(t_{1}, t_{2}\right)$ is Gorenstein if there is an a_{1} and $a_{2} \in \mathbb{Z}$ such that

$$
h\left(1 / t_{1}, 1 / t_{2}\right)=t_{1}^{-a_{1}} t_{2}^{-a_{2}} h\left(t_{1}, t_{2}\right)
$$

If such a_{1}, a_{2} exist, then these integers are called the a-invariants.

Definitions

Our examples can be expressed in the following way:

$$
h\left(t_{1}, t_{2}\right)=\frac{p(t)}{\left(1-t_{1}^{m}\right)\left(1-t_{2}^{n}\right)},
$$

where $p(t)$ is a polynomial and $m, n \in \mathbb{N}$.
Definition
We say $h\left(t_{1}, t_{2}\right)$ is Gorenstein if there is an a_{1} and $a_{2} \in \mathbb{Z}$ such that

$$
h\left(1 / t_{1}, 1 / t_{2}\right)=t_{1}^{-a_{1}} t_{2}^{-a_{2}} h\left(t_{1}, t_{2}\right) .
$$

If such a_{1}, a_{2} exist, then these integers are called the a-invariants.
We are particularly in the case where $a_{1}+a_{2}+d=0$, where d is the dimension.

The Laurent Series

Analysis can be done on the Laurent expansion of the rational function $h(t)$ at $t=1$.

The Laurent Series

Analysis can be done on the Laurent expansion of the rational function $h(t)$ at $t=1$.

Definition
The Laurent series of a function $f(z)$ that is analytic through a domain besides a point z_{0} is given by

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}},
$$

where

$$
\begin{aligned}
& a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \\
& b_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} d z
\end{aligned}
$$

Example

Consider the function

$$
h(t)=\frac{1}{(1-t)}
$$

To find the Laurent series, we express $h(t)$ in the following way:

$$
\begin{aligned}
\frac{1}{1-t} & =\frac{1}{t}\left(\frac{1}{1 / t-1}\right) \\
& =\frac{-1}{t}\left(\frac{1}{1-1 / t}\right) \\
& =\frac{-1}{t} \sum_{n=0}^{\infty} \frac{1}{t^{n}} \\
& =-\sum_{n=0}^{\infty} \frac{1}{t^{n+1}}
\end{aligned}
$$

Background

In [2], Cowie et al. found that when \mathbf{a} is generic the first term in the Laurent expansion, γ_{0}, is given by

$$
\gamma_{0}(\mathbf{a})=\sum_{i=1}^{k} \frac{-a_{i}^{n-2}}{\prod_{\substack{j=1 \\ i \neq j}}^{n}\left(a_{i}-a_{j}\right)},
$$

where again n is the dimension of the weight vector a and k is the number of negative weights. In particular, $\gamma_{0}(\mathbf{a}) \neq 0$.

Example

Example
a-Invariants ($-1,-1$) Dimension 2

```
mn[64]:= h[t1_, t2_]:= (t1^ 21t2^ 23)/((1-t1^43)(1-t2^47))
            Simplify[h[t1, t2]]
            Simplify[h[1/t1, 1/t2]]
```

 \(\mathrm{h}[1 / \mathrm{t} 1,1 / \mathrm{t} 2]-\left(\mathrm{t} 1^{\wedge} 1 \mathrm{t} 2^{\wedge} 1\right) \mathrm{h}[\mathrm{t} 1, \mathrm{t} 2] / / \mathrm{Simplify}\)
 Out[65] \(=\frac{t 1^{21} t 2^{23}}{\left(-1+t 1^{43}\right)\left(-1+t 2^{47}\right)}\)
 Out[66] \(=\frac{t 1^{22} \mathrm{t2}^{24}}{\left(-1+\mathrm{t} 1^{43}\right)\left(-1+\mathrm{t} 2^{47}\right)}\)
 Out $[67]=0$
(*a-invariants (1,1)

Example

Example a-Invariants (-2,-2) Dimension 4

[^0]
Exploring Relations

Our coefficients are defined iteratively as the Laurent coefficients at $t_{2}=1$ of the Laurent coefficients at $t_{1}=1$.

Exploring Relations

Our coefficients are defined iteratively as the Laurent coefficients at $t_{2}=1$ of the Laurent coefficients at $t_{1}=1$.
To find relations, we establish a system of equations involving the series coefficients of each example. We use a function like the following:
Sum [c[[j]]*
SeriesCoefficient[
SeriesCoefficient[h1[t1,t2], $\{\mathrm{t} 1,1,-1\}],\{\mathrm{t} 2,1, \mathrm{i}\}],\{\mathrm{i}, \min , \max \}]==0$

Example

Example

a-Invariants (1,1) Dimension 2

$\ln [7]=\mathrm{h}\left[t 1_{-}, t 2_{-}\right]:=\left(t 1^{\wedge} 27 t 2^{\wedge} 23\right) /\left(\left(1-t 1^{\wedge} 53\right)\left(1-t 2^{\wedge} 45\right)\right)$
ex1 = Table[(-1$)^{\wedge}(\mathrm{i}+\mathrm{j})$ SeriesCoefficient[SeriesCoefficient[h[t1, t2],$\left.\left.\left.\{\mathrm{t} 1,1, \mathrm{i}\}\right],\{\mathrm{t} 2,1, \mathrm{j}\}\right],\{\mathrm{i},-1,6\},\{j,-1,6\}\right]$; MatrixForm[ex1]
Out $[\mathrm{B}]=$ Null $\left(\begin{array}{cccccccc}\frac{1}{2385} & -\frac{1}{2385} & -\frac{253}{7155} & 0 & \frac{224411}{107325} & \frac{224411}{107325} & -\frac{35322848}{321975} & -\frac{71318929}{321975} \\ -\frac{1}{2385} & \frac{1}{2385} & \frac{253}{7155} & 0 & -\frac{224411}{107325} & -\frac{224411}{107325} & \frac{35322848}{321975} & \frac{71318929}{321975} \\ -\frac{13}{265} & \frac{13}{265} & \frac{3289}{795} & 0 & -\frac{2917343}{11925} & -\frac{2917343}{11925} & \frac{459197024}{35775} & \frac{927146077}{35775} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1066}{265} & -\frac{1066}{265} & -\frac{269698}{795} & 0 & \frac{239222126}{11925} & \frac{239222126}{11925} & -\frac{37654155968}{35775} & -\frac{76025978314}{35775} \\ \frac{1066}{265} & -\frac{1066}{265} & -\frac{269698}{795} & 0 & \frac{239222126}{11925} & \frac{239222126}{11925} & -\frac{37654155968}{35775} & -\frac{76025978314}{35775} \\ -\frac{77961}{265} & \frac{77961}{265} & \frac{6574711}{265} & 0 & -\frac{5831768657}{3975} & -\frac{5831768657}{3975} & \frac{917934850976}{11925} & \frac{1853365007923}{11925} \\ -\frac{156988}{265} & \frac{156988}{265} & \frac{39717964}{795} & 0 & -\frac{35229834068}{11925} & -\frac{35229834068}{11925} & \frac{5545263261824}{35775} & \frac{11196216025852}{35775}\end{array}\right)$

Example

```
un22g= min=10
    max=18
    g= i+3
    c={c1,c2, c3, c4, c5 c c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20,c21}
    Solve[
    {Sum[c[lg]]*
        SeriesCoefficient[
            SeriesCoefficient[h1[z1, z2],{z1, 1, -1}], {z2, 1, i}], {i, min, max}]=m=0,
            Sum[c[tgl]*
            SeriesCoefficient[
                SeriesCoefficient[h2[z1, z2],{z1, 1, -1}], {z2, 1, i}],{i, min, max}]=0=0,
            Sun[c[[g]]*
            SeriesCoefficient[
            SeriesCoefficient[h3[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i,min, max}]==0,
            Sum[c[[g]]*
            SeriesCoefficient[
            SeriesCoefficient[h4[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i,min, max}]==0,
            Sum[c[[g]]*
            SeriesCoefficient
            SeriesCoefficient[h5[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i,min, max}]==0
            Sum[c[[g]]*
            SeriesCoefficient[
            SeriesCoefficient[h6[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i,min, max}]==0,
            Sum[c[[g]]*
            SeriesCoefficient[
            SeriesCoefficient[h7[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i,min, max}]==0,
    Sum[c[[g]]*
            SeriesCoefficient[
            SeriesCoefficient[h8[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i,min, max}]==0,
Sum[c[[g]]*
            SeriesCoefficient[
            SeriesCoefficient[h9[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0,
Sum[c[[g]]*
            SeriesCoefficient[
            SeriesCoefficient[h10[z1, z2], {z1, 1, -1}], {z2, 1, i}], {i, min, max}]==0,
            Sum[c[[g]]*
            SeriesCoefficient[
```



```
Ou{232 = {{c14 -> 8 c13, c15 -> 28 c13, c16 -> 56 c13, c17 -> 70 c13, c18 -> 56 c13, c19 -> 28 c13, c20 -> 8 c13, c21 -> c13}}
```


Relations

$$
\begin{gathered}
\gamma_{0}=0 \\
\gamma_{1}=\text { unrestricted } \\
\gamma_{2}+\gamma_{3}=0 \\
\gamma_{3}+2 \gamma_{4}+\gamma_{5}=0 \\
\gamma_{4}+3 \gamma_{5}+3 \gamma_{6}+\gamma_{7}=0 \\
\gamma_{5}+4 \gamma_{6}+6 \gamma_{7}+4 \gamma_{8}+\gamma_{9}=0 \\
\gamma_{6}+5 \gamma_{7}+10 \gamma_{8}+10 \gamma_{9}+5 \gamma_{10}+\gamma_{11}=0 \\
\gamma_{7}+6 \gamma_{8}+15 \gamma_{9}+20 \gamma_{10}+15 \gamma_{11}+6 \gamma_{12}+\gamma_{13}=0 \\
\gamma_{8}+7 \gamma_{9}+21 \gamma_{10}+35 \gamma_{11}+35 \gamma_{12}+21 \gamma_{13}+7 \gamma_{14}+\gamma_{15}=0 \\
\gamma_{9}+8 \gamma_{10}+28 \gamma_{11}+56 \gamma_{12}+70 \gamma_{13}+56 \gamma_{14}+28 \gamma_{15}+8 \gamma_{16}+\gamma_{17}=0
\end{gathered}
$$

Results

Examples with Pascal relations:

- a-Invariants ($-1,-1$) Dimension 2. Row one and column one.

Results

Examples with Pascal relations:

- a-Invariants ($-1,-1$) Dimension 2. Row one and column one.
- a-Invariants (-2,-2) Dimension 4. Row one.

Results

Examples with Pascal relations:

- a-Invariants ($-1,-1$) Dimension 2. Row one and column one.
- a-Invariants (-2,-2) Dimension 4. Row one.
- a-Invariants (-4,-4) Dimension 8. Row one.

Results

Examples with Pascal relations:

- a-Invariants ($-1,-1$) Dimension 2. Row one and column one.
- a-Invariants (-2,-2) Dimension 4. Row one.
- a-Invariants (-4,-4) Dimension 8. Row one.
- a-Invariants (1,1) Dimension 2. Row one and column one.

Results

Examples with Pascal relations:

- a-Invariants ($-1,-1$) Dimension 2. Row one and column one.
- a-Invariants (-2,-2) Dimension 4. Row one.
- a-Invariants (-4,-4) Dimension 8. Row one.
- a-Invariants (1,1) Dimension 2. Row one and column one.
- a-Invariants $(2,1)$ Dimension 2. Row one.

Results

Examples with Pascal relations:

- a-Invariants ($-1,-1$) Dimension 2. Row one and column one.
- a-Invariants (-2,-2) Dimension 4. Row one.
- a-Invariants (-4,-4) Dimension 8. Row one.
- a-Invariants (1,1) Dimension 2. Row one and column one.
- a-Invariants $(2,1)$ Dimension 2. Row one.
- a-Invariants (-2,-1) Dimension 2. Row one.

Results

Examples with Pascal relations:

- a-Invariants ($-1,-1$) Dimension 2. Row one and column one.
- a-Invariants ($-2,-2$) Dimension 4. Row one.
- a-Invariants (-4,-4) Dimension 8. Row one.
- a-Invariants (1,1) Dimension 2. Row one and column one.
- a-Invariants $(2,1)$ Dimension 2. Row one.
- a-Invariants $(-2,-1)$ Dimension 2. Row one.
- a-Invariants (-3,1) Dimension 2. Row one.

Results

Examples with Pascal relations:

- a-Invariants ($-1,-1$) Dimension 2. Row one and column one.
- a-Invariants ($-2,-2$) Dimension 4. Row one.
- a-Invariants (-4,-4) Dimension 8. Row one.
- a-Invariants (1,1) Dimension 2. Row one and column one.
- a-Invariants $(2,1)$ Dimension 2. Row one.
- a-Invariants $(-2,-1)$ Dimension 2. Row one.
- a-Invariants (-3,1) Dimension 2. Row one.
- a-Invariants ($-3,-1$) Dimension 2. Row one.

The Lucas Triangle

$$
\begin{gathered}
\gamma_{0}=0 \\
\gamma_{1}=\text { unrestricted } \\
\gamma_{2}+2 \gamma_{3}=0 \\
\gamma_{3}+3 \gamma_{4}+2 \gamma_{5}=0 \\
\gamma_{4}+4 \gamma_{5}+5 \gamma_{6}+2 \gamma_{7}=0 \\
\gamma_{5}+5 \gamma_{6}+9 \gamma_{7}+7 \gamma_{8}+2 \gamma_{9}=0 \\
\gamma_{6}+6 \gamma_{7}+14 \gamma_{8}+16 \gamma_{9}+9 \gamma_{10}+2 \gamma_{11}=0 \\
\gamma_{7}+7 \gamma_{8}+20 \gamma_{9}+30 \gamma_{10}+25 \gamma_{11}+11 \gamma_{12}+2 \gamma_{13}=0 \\
\gamma_{8}+8 \gamma_{9}+27 \gamma_{10}+50 \gamma_{11}+55 \gamma_{12}+36 \gamma_{13}+13 \gamma_{14}+2 \gamma_{15}=0 \\
\gamma_{9}+9 \gamma_{10}+35 \gamma_{11}+77 \gamma_{12}+105 \gamma_{13}+91 \gamma_{14}+49 \gamma_{15}+15 \gamma_{16}+2 \gamma_{17}=0
\end{gathered}
$$

Results

Examples with the Lucas triangle:

- a-Invariants ($-1,-1$) Dimension 2. Row two and column two.

Results

Examples with the Lucas triangle:

- a-Invariants (-1,-1) Dimension 2. Row two and column two.
- a-Invariants ($-3,-3$) Dimension 6. Row one.

Results

Examples with the Lucas triangle:

- a-Invariants (-1,-1) Dimension 2. Row two and column two.
- a-Invariants $(-3,-3)$ Dimension 6. Row one.
- a-Invariants (-2,-1) Dimension 2. Column one.

Conclusions

- Almost surely relations in row one, and most of the time they involve Pascal's triangle. In most cases, there are relations in column one as well, also involving Pascal's triangle.

Conclusions

- Almost surely relations in row one, and most of the time they involve Pascal's triangle. In most cases, there are relations in column one as well, also involving Pascal's triangle.
- Seems unlikely that the analog to univariate case is the sum of the a-invariants and dimension $\left(a_{1}+a_{2}+d=r\right)$. The $(-3,-3)$ and $(-3,1)$ cases are acting up.

Potential Future Projects

- Search the $(-5,-5)$ dimension 10 case.

Potential Future Projects

- Search the $(-5,-5)$ dimension 10 case.
- Further investigate column one in $a_{1}+a_{2}+d=0$ cases.

Potential Future Projects

- Search the $(-5,-5)$ dimension 10 case.
- Further investigate column one in $a_{1}+a_{2}+d=0$ cases.
- Furhter investigate subsequent rows and columns of other random examples.

Potential Future Projects

- Search the $(-5,-5)$ dimension 10 case.
- Further investigate column one in $a_{1}+a_{2}+d=0$ cases.
- Furhter investigate subsequent rows and columns of other random examples.
- Derive a formula for given gammas in the Laurent expansion.

References

(1) Christopher Seaton. Private notes.
(2) Emily Cowie, Hans-Christian Herbig, Daniel Herden, and Christopher Seaton. The Hilbert series and a-invariant of circle invariants. To appear in the Journal of Pure and Applied Algebra.
(3) Harm Derksen, Gregor Kemper. Computational Invariant Theory Second Edition. Springer, 2015.

[^0]: ur($\mathrm{x}=\mathrm{h} 2\left[z 1_{-}, z 2_{-}\right]:=\frac{1+2 z 1 z 2+z 1^{2} z 2+z 1^{3} z 2+z 1 z 2^{2}+3 z 1^{2} z 2^{2}+2 z 1^{3} z 2^{2}+2 z 1^{4} z 2^{2}+z 1 z 2^{3}+2 z 1^{2} z 2^{3}+3 z 1^{3} z 2^{3}+2 z 1^{4} z 2^{3}+z 1^{5} z 2^{3}+2 z 1^{2} z 2^{4}+2 z 1^{3} z 2^{4}+3 z 1^{4} z 2^{4}+z 1^{5} z 2^{4}+z 1^{3} z 2^{5}+z 1^{4} z 2^{5}+2 z 1^{5} z 2^{5}+z 1^{6} z 2^{6}}{\left(-1+1^{2} z 2\right)\left(-21^{4} z\right)\left(-1+z 12^{2}\right)\left(-1+z 12^{4}\right)}$ $h 2[1 / z 1,1 / z 2]-\left(z 1^{\wedge} 2 z 2^{\wedge} 2\right) h 2[z 1, z 2] / /$ Simplify
 OU(T) $=0$

